158
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Cardiac regeneration: the gene therapy approach

, MD PhD & , MD PhD
Pages 411-425 | Published online: 03 Apr 2009

Bibliography

  • Sutton M, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 2000;101:2981-8
  • Tiyyagura SR, Pinney SP. Left ventricular remodeling after myocardial infarction: past, present, and future. Mt Sinai J Med 2006;73:840-51
  • Lenderink T, Simoons ML, Van Es GA, et al. Benefit of thrombolytic therapy is sustained throughout five years and is related to TIMI perfusion grade 3 but not grade 2 flow at discharge. The European Cooperative Study Group. Circulation 1995;92:1110-6
  • Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 1991;260:H1406-14
  • Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215-62
  • Lopez A, Murray C. The global burden of disease, 1990–2020. Nat Med 1998;4:1241-3
  • Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348:2007-18
  • Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med 2002;347:1397-1402
  • McMurray JJ, Pfeffer MA. Heart failure. Lancet 2005;365:1877-89
  • Stevenson LW. Design of therapy for advanced heart failure. Eur J Heart Fail 2005;7:323-31
  • Khand A, Gemmel I, Clark AL, Cleland JG. Is the prognosis of heart failure improving? J Am Coll Cardiol 2000;36:2284-86
  • Konstam MA. Progress in heart failure management? Lessons from the real world. Circulation 2000;102:1076-78
  • Mallory GK, White PD, Salcedo-Salgar J. The speed of healing of myocardial infarction: a study of the pathologic anatomy in 72 cases. Am Heart J 1939;18:647-71
  • Zak R. Cell proliferation during cardiac growth. Am J Cardiol 1973;31:211-9
  • Ueno H, Perryman M, Roberts R, Schneider MD. Differentiation of cardiac myocytes after mitogen withdrawal exhibits three sequential states of the ventricular growth response. J Cell Biol 1988;107:1911-8
  • Poolman RA, Brooks G. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J Mol Cell Cardiol 1998;30:2121-35
  • Brooks G, Poolman RA, Li JM. Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc Res 1998;39:301-11
  • Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999;341:1276-83
  • Nadal-Ginard B, Mahdavi V. Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J Clin Invest 1989;84:1693-700
  • Tam SK, Gu W, Mahdavi V, et al. Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann NY Acad Sci 1995;752:72-9
  • Von Harsdorf R. Can cardiomyocytes divide? Heart 2001;86:481-2
  • Christoffels V, Habets P, Franco D, et al. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 2000;223:266-78
  • Cohn JN, Bristow MR, Chien KR, et al. Report of the National heart, lung, and blood institute special emphasis panel on heart failure research. Circulation 1997;95:766-70
  • Laflamme M, Gold J, Xu C, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 2005;167:663-71
  • Lyngbaek S, Schneider M, Hansen JL, Sheikh SP. Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 2007;102:101-14
  • Kajstura J, Urbanek K, Rota M, et al. Cardiac stem cells and myocardial disease. J Mol Cell Cardiol 2008;45:505-13
  • Reinecke H, Minami E, Zhu WZ, Laflamme MA. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res 2008;103:1058-71
  • Strauer BE, Brehm M, Schannwell CM. The therapeutic potential of stem cells in heart disease. Cell Prolif 2008;41(Suppl 1):126-45
  • Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008;451:937-42
  • Penn MS, Khalil MK. Exploitation of stem cell homing for gene delivery. Expert Opin Biol Ther 2008;8:17-30
  • Guan K, Hasenfuss G. Do stem cells in the heart truly differentiate into cardiomyocytes? J Mol Cell Cardiol 2007;43:377-87
  • Brodsky WY, Arefyeva AM, Uryvaeva IV. Mitotic polyploidization of mouse heart myocytes during the first postnatal week. Cell Tissue Res 1980;210:133-44
  • Rumyantsev P. Interrelation of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 1977;51:187-273
  • Katzberg A, Farmer B, Harris R. The predominance of binucleation in isolated rat heart myocytes. Am J Anat 1977;149:489-500
  • Brodsky VYA, Chernyaev AL, Vasilyeva IA. Variability of the cardiomyocyte ploidy in normal human hearts. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;61:289-94
  • Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardioll 1996;28:1737-46
  • Soonpaa MH, Kim KK, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996;271:H2183-9
  • Petersen RO, Baserga R. Nucleic acid and protein synthesis in cardiac muscle of growing and adult mice. Exp Cell Res 1965;40:340-52
  • van Amerongen MJ, Engel FB. Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med 2008;12:2233-44
  • Capasso J, Bruno S, Cheng W, et al. Ventricular loading is coupled with DNA synthesis in adult cardiac myocytes after acute and chronic myocardial infarction in rats. Circ Res 1992;71:1379-89
  • Sedmera D, Thompson R, Kolar F. Effect of increased pressure loading on heart growth in neonatal rats. J Mol Cell Cardiol 2003;35:301-9
  • Ahuja P, Perriard E, Pedrazzini T, et al. Re-expression of proteins involved in cytokinesis during cardiac hypertrophy. Exp Cell Res 2007;313:1270-83
  • Soopaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis during hypertrophy in adult mice. Am J Physiol 1994;266:H1439-45
  • Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 1997;272:H220-6
  • de Simone G, Devereux RB, Daniels ER, Meyer RA. Gender differences in left ventricular growth. Hypertension 1995;26:979-83
  • Olivetti G, Giordano G, Corradi D, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol 1995;26:1068-79
  • Chen X, Wilson RM, Kubo H, et al. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 2007;100:536-44
  • Adler CP, Friedburg H, Herget GW, et al. Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch 1996;429:159-64
  • Gräbner W, Pfitzer P. Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B Cell Pathol 1974;15:279-94
  • Schmid G, Pfitzer P. Mitoses and binucleated cells in perinatal human hearts. Virchows Arch B Cell Pathol Incl Mol Pathol 1985;48:59-67
  • Korecky B, Sweet S, Rakusan K. Number of nuclei in mammalian cardiac myocytes. Can J Physiol Pharmacol 1979;57:1122-9
  • Zak R. Development and proliferative capacity of cardiac muscle cells. Circ Res 1974;34&35(Suppl II):II-17-26
  • Novi AM. Molecular basis of a control mechanism of DNA synthesis in mammalian cells. Klin Wochenschr 1976;54:961-8
  • Vliegen HW, Bruschke AV, Van der Laarse A. Different response of cellular DNA content to cardiac hypertrophy in human and rat heart myocytes. Comp Biochem Physiol A 1990;95:109-14
  • Ebert L, Pfitzer P. Nuclear DNA of myocardial cells in the periphery of infarctions and scars. Virchows Arch B Cell Pathol 1977;24:209-17
  • Herget GW, Neuburger M, Plagwitz R, Adler CP. DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 1997;36:45-51
  • Linzbach AJ. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv Cardiol 1976;18:1-14
  • Quaini F, Cigola E, Lagrasta C, et al. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res 1994;75:1050-63
  • Anversa P, Kajstura J, Cheng W, et al. Insulin-like growth factor-1 and myocyte growth: the danger of a dogma, II: induced myocardial growth: pathologic hypertrophy. Cardiovasc Res 1996;32:484-95
  • Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 1998;83:1-14
  • Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-7
  • Cabeza Meckert P, García Rivello H, Vigliano C, et al. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res 2005;67:116-23
  • Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res 2002;90:1044-54
  • Kirshenbaum LA, Abdellatif M, Chakraborty S, et al. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol 1996;179:402-11
  • Agah R, Kirshenbaum LA, Abdellatif M, et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 1997;100:2722-8
  • von Harsdorf R, Hauck L, Mehrhof F, et al. E2F-1 overexpression in cardiomyocytes induces downregulation of p21CIP1 and p27KIP1 and release of active cyclin-dependent kinases in the presence of insulin-like growth factor I. Circ Res 1999;85:128-36
  • Jackson T, Allard MF, Sreenan CM, et al. Transgenic animals as a tool for studying the effect of the c-myc proto-oncogene on cardiac development. Mol Cell Biochem 1991;104:15-19
  • Xiao G, Mao S, Baumgarten G, et al. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 2001;89:1122-9
  • Hahn JY, Cho HJ, Bae JW, et al. β-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem 2006;281:30979-89
  • Tseng AS, Engel FB, Keating MT. The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 2006;13:957-63
  • Kerkela R, Kockeritz L, Macaulay K, et al. Deletion of GSK-3β in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Invest 2008;118:3609-18
  • Soonpaa MH, Koh GY, Pajak L, et al. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 1997;99:2644-54
  • Pasumarthi K, Nakajima H, Nakajima HO, et al. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 2005;96:110-8
  • Hassink R, Pasumarthi K, Nakajima H, et al. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res 2008;78:18-25
  • Tamamori-Adachi M, Takagi H, Hashimoto K, et al. Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and Skp2 ubiquitin ligase. Cardiovasc Res 2008;80:181-90
  • Limana F, Urbanek K, Chimenti S, et al. bcl-2 overexpression promotes myocyte proliferation. Proc Natl Acad Sci USA 2002;99:6257-62
  • Liao HS, Kang PM, Nagashima H, et al. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 2001;88:443-50
  • Dätwyler D, Magyar J, Weikert C, et al. Reactivation of the mitosis-promoting factor in postmitotic cardiomyocytes. Cells Tissues Organs 2003;175:61-71
  • Bicknell K, Coxon C, Brooks G. Forced expression of the cyclin B1–CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 2004;382:411-6
  • Williams SD, Zhu H, Zhang L, Bernstein HS. Adenoviral delivery of human CDC5 promotes G2/M progression and cell division in neonatal ventricular cardiomyocytes. Gene Ther 2006;13:837-43
  • Chaudhry HW, Dashoush NH, Tang H, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 2004;279:35858-66
  • Woo Y, Panlilio C, Cheng R, et al. Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation 2006;114(1 Suppl):I206-13
  • Cheng R, Asai T, Tang H, et al. Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 2007;100:1741-8
  • Reiss K, Cheng W, Ferber A, et al. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci USA 1996;93:8630-5
  • Santini MP, Tsao L, Monassier L, et al. Enhancing repair of the mammalian heart. Circ Res 2007;100:1732-40
  • Sen A, Dunnmon P, Henderson SA, et al. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J Biol Chem 1988;263:19132-6
  • Kirshenbaum LA, Schneider MD. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein- and p300-binding domains. J Biol Chem 1995;270:7791-4
  • MacLellan WR, Garcia A, Oh H, et al. Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol 2005;25:2486-97
  • Poolman RA, Li JM, Durand B, et al. Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27KIP1 knockout mice. Circ Res 1999;85:117-27
  • Nakajima H, Nakajima HO, Tsai S, Field L. Expression of mutant p193 and p53 permits cardiomyocyte cell cycle reentry after myocardial infarction in transgenic mice. Circ Res 2004;94:1606-14
  • Engel FB, Schebesta M, Duong MT, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 2005;19:1175-87
  • Engel FB, Hsieh PCH, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 2006;103:15546-51
  • Engel FB, Schebesta M, Keating MT. Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 2006;41:592-4
  • Laguens R, Cabeza Meckert P, Vera Janavel G, et al. Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Ther 2002;9:1676-81
  • Crottogini A, Cabeza Meckert P, Vera Janavel G, et al. Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum Gene Ther 2003;14:1307-18
  • Laguens R, Cabeza Meckert P, Vera Janavel G, et al. Cardiomyocyte hyperplasia after plasmid-mediated vascular endothelial growth factor gene transfer in pigs with chronic myocardial ischemia. J Gene Med 2004;6:222-7
  • Vera Janavel G, Crottogini A, Cabeza Meckert P, et al. Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Ther 2006;13:1133-42
  • Claycomb WC, Moses RL. Growth factors and TPA stimulate DNA synthesis and alter the morphology of cultured terminally differentiated adult rat cardiac muscle cells. Dev Biol 1988;127:257-65
  • Decker RS, Cook MG, Behnke-Barclay M, Decker ML. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading. Circ Res 1995;77:544-55
  • Seko Y, Takahashi N, Tobe K, et al. Vascular endothelial growth factor (VEGF) activates Raf-1, mitogen-activated protein (MAP) kinases, and S6 kinase (p90rsk) in cultured rat cardiac myocytes. J Cell Physiol 1998;175:239-46
  • Takahashi N, Seko Y, Noiri E, et al. Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Circ Res 1999;84:1194-202
  • Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5-15
  • Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 2002;415:240-3
  • Ferrarini M, Arsic N, Recchia FA, et al. Adeno-associated virus-mediated tansduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circ Res 2006;98:954-61
  • Liu X, Chen Y, Zhang F, et al. Synergistically therapeutic effects of VEGF165 and angiopoietin-1 on ischemic rat myocardium. Scand Cardiovasc J 2007;41:95-101
  • Suzuki G, Lee TC, Fallavollita JA, et al. Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 2005;96:767-75
  • Lynch P, Lee TC, Fallavollita JA, et al. Intracoronary administration of AdvFGF-5 (fibroblast growth factor-5) ameliorates left ventricular dysfunction and prevents myocyte loss in swine with developing collaterals and ischemic cardiomyopathy. Circulation 2007;116(1 Suppl):I71-6
  • Zou Y, Takano H, Mizukami M, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 2003;108:748-53
  • Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007;167:989-97
  • Ince H. Petzsch M, Rehders TC, et al. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 2004;11:695-704
  • Gavira JJ, Herreros J, Perez A, et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg 2006;131:799-804
  • Stamm C, Kleine HD, Choi YH, et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 2007;133:717-25
  • Tatsumi T, Ashihara E, Yasui T, et al. Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ J 2007;71:1199-207
  • Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005;46:1651-8
  • Gorr TA, Deten A. Manipulating myocyte cell cycle control for cardiac repair. Cardiovasc Res 2008;80:161-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.