151
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Is passive immunization for Alzheimer's disease ‘alive and well’ or ‘dead and buried’?

, MD PhD
Pages 481-491 | Published online: 03 Apr 2009

Bibliography

  • Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 2008;31:175-93
  • Gardberg AS, Dice LT, Ou S, et al. Molecular basis for passive immunotherapy of Alzheimer's disease. Proc Natl Acad Sci USA 2007;104(40):15659-64
  • Geylis V, Steinitz M. Immunotherapy of Alzheimer's disease (AD): from murine models to anti-amyloid beta (Aβ) human monoclonal antibodies. Autoimmun Rev 2006;5(1):33-9
  • Hawkes CA, McLaurin J. Immunotherapy as treatment for Alzheimer's disease. Expert Rev Neurother 2007;7(11):1535-48
  • Hock C, Koietzko U, Streffer JR, et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron 2003;38(4):547-54
  • Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer's research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem 2008;104(4):859-74
  • Mattson MP, Chan SL. Good and bad amyloid antibodies. Science 2003;301(5641):1847-9
  • Morgan D, Gitter BD. Evidence supporting a role for anti-Aβ antibodies in the treatment of Alzheimer's disease. Neurobiol Aging 2004;25(5):605-8
  • Neff F, Wei X, Nölker C, et al. Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 2008;7(6):501-7
  • Selkoe DJ. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 2004;140(8):627-38
  • Solomon B. Beta-amyloid-based immunotherapy as a treatment of Alzheimers disease. Drugs Today (Barc) 2007;43(5):333-42
  • Solomon B. Clinical immunologic approaches for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 2007;16(6):819-28
  • Solomon B. Intravenous immunoglobulin and Alzheimer's disease immunotherapy. Curr Opin Mol Ther 2007;9(1):79-85
  • Foster JK, Verdile G, Bates KA, Martins RN. Immunization in Alzheimer's disease: naive hope or realistic clinical potential? Mol Psychiatry 2008; published online 28 October 2008; doi: 10.1038/mp.2008.115
  • Steinitz M. Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease. Expert Opin Biol Ther 2008;8(5):633-42
  • Wisniewski T, Konietzko U. Amyloid-β immunisation for Alzheimer's disease. Lancet Neurol 2008;7(9):805-11
  • Dasilva KA, Aubert I, McLaurin J. Vaccine development for Alzheimer's disease. Curr Pharm Des 2006;12(33):4283-93
  • Lemere CA, Maier M, Peng Y, et al. Novel Aβ immunogens: is shorter better? Curr Alzheimer Res 2007;4(4):427-36
  • Maier M, Seabrook TJ, Lemere CA. Developing novel immunogens for an effective, safe Alzheimer's disease vaccine. Neurodegener Dis 2005;2(5):267-72
  • Ferrer I, Boada Rovira M, Sánchez Guerra ML, et al. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol 2004;14(1):11-20
  • Fox NC, Black RS, Gilman S, et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 2005;64(9):1563-72
  • Gilman S, Koller M, Black RS, et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005;64(9):1553-62
  • Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008;372(9634):216-23
  • Lee M, Bard F, Johnson-Wood K, et al. Aβ42 immunization in Alzheimer's disease generates Aβ N-terminal antibodies. Ann Neurol 2005;58(3):430-5
  • Levites Y, Smithson LA, Price RW, et al. Insights into the mechanisms of action of anti-Aβ antibodies in Alzheimer's disease mouse models. FASEB J 2006;20(14):2576-8
  • Masliah E, Hansen L, Adame A, et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 2005;64(1):129-31
  • Morgan D. Mechanisms of Aβ plaque clearance following passive Aβ immunization. Neurodegener Dis 2005;2(5):261-6
  • Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 2003;9(4):448-52
  • Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 2003;61(1):46-54
  • Patton RL, Kalback WM, Esh CL, et al. Amyloid-β peptide remnants in AN-1792-immunized Alzheimer's disease patients: a biochemical analysis. Am J Pathol 2006;169(3):1048-63
  • Martin-Jones Z, Lasagna-Reeves C. Which is a better target for AD immunotherapy, Aβ or tau? Alzheimer Dis Assoc Disord 2008;22(2):111-2
  • Gotz J, Streffer JR, David D, et al. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 2004;9(7):664-83
  • Hardy J. Has the amyloid cascade hypothesis for Alzheimer's disease been proved? Curr Alzheimer Res 2006;3(1):71-3
  • Aisen PS, Gauthier S, Vellas B, et al. Alzhemed: a potential treatment for Alzheimer's disease. Curr Alzheimer Res 2007;4(4):473-8
  • Green RC, Schneider LS, Hendrix SB, et al. Safety and efficacy of Tarenflurbil in subjects with mild Alzheimer's disease: results from an 18-month multi-center Phase III trial. Alzheimers Dementia 2008;4(4 Suppl 2):T165
  • Chiang PK, Lam MA, Luo Y. The many faces of amyloid β in Alzheimer's disease. Curr Mol Med 2008;8(6):580-4
  • Gongadze N, Antelava N, Kezeli T, et al. The mechanisms of neurodegenerative processes and current pharmacotherapy of Alzheimer's disease. Georgian Med News 2008;(155):44-8
  • Salloway S, Mintzer J, Weiner MF, Cummings JL. Disease-modifying therapies in Alzheimer's disease. Alzheimers Dement 2008;4(2):65-79
  • Games D, Bard F, Grajeda H, et al. Prevention and reduction of AD-type pathology in PDAPP mice immunized with Aβ1–42. Ann NY Acad Sci 2000;920:274-84
  • Janus C, Pearson J, McLaurin J, et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 2000;408(6815):979-82
  • Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400(6740):173-7
  • Bombois S, Maurage CA, Gompel M, et al. Absence of β-amyloid deposits after immunization in Alzheimer disease with Lewy body dementia. Arch Neurol 2007;64(4):583-7
  • Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat Neurosci 2002;5(5):452-7
  • Asami-Odaka A, Obayashi-Adachi Y, Matsumoto Y, et al. Passive immunization of the Aβ42(43) C-terminal-specific antibody BC05 in a mouse model of Alzheimer's disease. Neurodegener Dis 2005;2(1):36-43
  • Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000;6(8):916-9
  • DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2001;98(15):8850-5
  • Gray AJ, Sakaguchi G, Shiratori C, et al. Antibody against C-terminal Aβ selectively elevates plasma Aβ. Neuroreport 2007;18(3):293-6
  • Kotilinek LA, Bacskai B, Westerman M, et al. Reversible memory loss in a mouse transgenic model of Alzheimer's disease. J Neurosci 2002;22(15):6331-5
  • Lombardo JA, Stern EA, McLellan ME, et al. Amyloid-β antibody treatment leads to rapid normalization of plaque-induced neuritic alterations. J Neurosci 2003;23(34):10879-83
  • Mohajeri MH, Saini K, Schultz JG, et al. Passive immunization against β-amyloid peptide protects central nervous system (CNS) neurons from increased vulnerability associated with an Alzheimer's disease-causing mutation. J Biol Chem 2002;277(36):33012-7
  • Wilcock DM, Rojiani A, Rosenthal A, et al. Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation 2004;1(1):24. Published online 8 December 2004 doi:10.1186/1742-2094-1-24
  • Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci 2005;8(1):79-84
  • Lee EB, Leng LZ, Zhang B, et al. Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice. J Biol Chem 2006;281(7):4292-9
  • Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 2004;11(3):213-28
  • Bacher M, Depboylu C, Du Y, et al. Peripheral and central biodistribution of 111In-labelled anti-beta-amyloid anitbodies in a transgenic mouse model of Alzheimer's disease. Neurosci Lett 2007;449(3):240-5
  • Lee EB, Leng LZ, Lee VM, Trojanowski JQ. Meningoencephalitis associated with passive immunization of a transgenic murine model of Alzheimer's amyloidosis. FEBS Lett 2005;579(12):2564-8
  • Burbach GJ, Vlachos A, Ghebremedhin E, et al. Vessel ultrastructure in APP23 transgenic mice after passive anti-Aβ immunotherapy and subsequent intracerebral hemorrhage. Neurobiol Aging 2007;28(2):202-12
  • Chauhan NB, Siegel GJ. Intracerebroventricular passive immunization in transgenic mouse models of Alzheimer's disease. Expert Rev Vaccines 2004;3(6):717-25
  • Gandy S, Walker L. Toward modeling hemorrhagic and encephalitic complications of Alzheimer amyloid-β vaccination in nonhuman primates. Curr Opin Immunol 2004;16(5):607-15
  • Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 2002;298(5597):1379
  • Racke MM, Boone LI, Hepburn DL, et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J Neurosci 2005;25(3):629-36
  • Wilcock DM, Jantzen PT, Li Q, et al. Amyloid-β vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 2007;144(3):950-60
  • Levites Y, Das P, Price RW, et al. Anti-Aβ42-and anti-Aβ40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 2006;116(1):193-201
  • Siemers E, Friederich S, Dean RA, et al. Safety, tolerability and biomarker effects of an Abeta monoclonal antibody administered to patients with Alzheimer's disease. Alzheimers Dementia 2008;4(4 suppl 2):T774
  • Grundman M, Black R. Clinical trials of Bapineuzumab, a beta-amyloid-targeted immunotherapy in patients with mild to moderate Alzheimer's disease. Alzheimers Dementia 2008;4(4 suppl 2):T166
  • Dodel RC, Du Y, Depboylu C, et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer's disease. J Neurol Neurosurg Psychiatry 2004;75(10):1472-4
  • Relkin NR, Szabo P, Adamiak B, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2008; published online online 21 February 2008, doi:10.1016/j.neurobiolaging.2007.12.021
  • Tsakanikas D, Shah K, Flores C, et al. Effects of uninterrupted intravenous immunoglobulin treatment of Alzheimer's disease for nine months. Alzheimers Dementia 2008;4(4 suppl 2):T776
  • Tucker SM, Borchelt DR, Troncoso JC. Limited clearance of pre-existing amyloid plaques after intracerebral injection of Aβ antibodies in two mouse models of Alzheimer disease. J Neuropathol Exp Neurol 2008;67(1):30-40
  • Rakover I, Arbel M, Solomon B. Immunotherapy against APP β-secretase cleavage site improves cognitive function and reduces neuroinflammation in Tg2576 mice without a significant effect on brain Aβ levels. Neurodegener Dis 2007;4(5):392-402
  • Liu R, Yuan B, Emadi S, et al. Single chain variable fragments against β-amyloid (Aβ) can inhibit Aβ aggregation and prevent Aβ-induced neurotoxicity. Biochemistry 2004;43(22):6959-67
  • Poduslo JF, Ramakrishnan M, Holasek SS, et al. In vivo targeting of antibody fragments to the nervous system for Alzheimer's disease immunotherapy and molecular imaging of amyloid plaques. J Neurochem 2007;102(2):420-33
  • Castellani RJ, Smith MA, Perry G, Friedland RP. Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer's disease pathogenesis. Neurobiol Aging 2004;25(5):599-602; discussion 603-4
  • Prada CM, Garcia-Alloza M, Betensky RA, et al. Antibody-mediated clearance of amyloid-β peptide from cerebral amyloid angiopathy revealed by quantitative in vivo imaging. J Neurosci 2007;27(8):1973-80
  • Schroeter S, Khan K, Barbour R, et al. Immunotherapy reduces vascular amyloid-β in PDAPP mice. J Neurosci 2008;28(27):6787-93
  • Belmouaz S, Desport E, Leroy F, et al. Posterior reversible encephalopathy induced by intravenous immunoglobulin. Nephrol Dial Transplant 2008;23(1):417-9
  • Koichihara R, Hamano S, Yamashita S, Tanaka M. Posterior reversible encephalopathy syndrome associated with IVIG in a patient with Guillain-Barre syndrome. Pediatr Neurol 2008;39(2):123-5
  • Mathy I, Gille M, Van Raemdonck F, et al. Neurological complications of intravenous immunoglobulin (IVIg) therapy: an illustrative case of acute encephalopathy following IVIg therapy and a review of the literature. Acta Neurol Belg 1998;98(4):347-51
  • Nakajima M. Posterior reversible encephalopathy complicating intravenous immunoglobulins in a patient with Miller–Fisher syndrome. Eur Neurol 2005;54(1):58-60
  • Van Diest D, Van Goethem JW, Vercruyssen A, et al. Posterior reversible encephalopathy and Guillain-Barre syndrome in a single patient: coincidence or causative relation? Clin Neurol Neurosurg 2007;109(1):58-62
  • Railey MD, Adair MA, Burks AW. Allergen immunotherapy for allergic rhinitis. Curr Allergy Asthma Rep 2008;8(1):1-3
  • Ahsan N. Intravenous immunoglobulin induced-nephropathy: a complication of IVIG therapy. J Nephrol 1998;11(3):157-61
  • Eibl MM. Intravenous immunoglobulins in neurological disorders: safety issues. Neurol Sci 2003;24(Suppl 4):S222-6
  • Gupta N, Ahmed I, Nissel-Horowitz S, et al. Intravenous gammglobulin-associated acute renal failure. Am J Hematol 2001;66(2):151-2
  • Haskin JA, Warner DJ, Blank DU. Acute renal failure after large doses of intravenous immune globulin. Ann Pharmacother 1999;33(7-8):800-3
  • Hefer D, Jaloudi M. Thromboembolic events as an emerging adverse effect during high-dose intravenous immunoglobulin therapy in elderly patients: a case report and discussion of the relevant literature. Ann Hematol 2004;83(10):661-5
  • Jolles S, Sewell WA, Leighton C. Drug-induced aseptic meningitis: diagnosis and management. Drug Saf 2000;22(3):215-26
  • Nettis E, Calogiuri G, Colanardi MC, et al. Drug-induced aseptic meningitis. Curr Drug Targets Immune Endocr Metabol Disord 2003;3(2):143-9
  • Orbach H, Tishler M, Shoenfeld Y. Intravenous immunoglobulin and the kidney–a two-edged sword. Semin Arthritis Rheum 2004;34(3):593-601
  • Zaidan R, Al Moallem M, Wani BA, et al. Thrombosis complicating high dose intravenous immunoglobulin: report of three cases and review of the literature. Eur J Neurol 2003;10(4):367-72
  • Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007;69(16):1622-34
  • Galasko D. Biomarkers for Alzheimer's disease–clinical needs and application. J Alzheimers Dis 2005;8(4):339-46
  • Kidd PM. Alzheimer's disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev 2008;13(2):85-115
  • Solomon PR, Murphy CA. Early diagnosis and treatment of Alzheimer's disease. Expert Rev Neurother 2008;8(5):769-80
  • Sramek JJ, Veroff AE, Cutler NR. Mild cognitive impairment: emerging therapeutics. Ann Pharmacother 2000;34(10):1179-88
  • Bartus RT, Dean RL 3rd. Pharmaceutical treatment for cognitive deficits in Alzheimer's disease and other neurodegenerative conditions: exploring new territory using traditional tools and established maps. Psychopharmacology (Berl) 2009;202(1-3):15-36
  • Oddo S, Billings L, Kesslak JP, et al. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 2004;43(3):321-32
  • Yang DS, Serpell LC, Yip CM, et al. Assembly of Alzheimer's amyloid-beta fibrils and approaches for therapeutic intervention. Amyloid 2001;8(Suppl 1):10-9
  • Doody RS, Ferris SH, Salloway S, et al. Donepezil treatment of patients with MCI. A 48-week randomized, placebo-controlled trial. Neurology 2009; published online 28 January 2009, doi:10.1212/01.wnl.0000344650.95823.03
  • Gauthier SG. Alzheimer's disease: the benefits of early treatment. Eur J Neurol 2005;12(Suppl 3):11-6
  • Jelic V, Kivipelto M, Winblad B. Clinical trials in mild cognitive impairment: lessons for the future. J Neurol Neurosurg Psychiatry 2006;77(4):429-38
  • Kirshner HS. Mild cognitive impairment: to treat or not to treat. Curr Neurol Neurosci Rep 2005;5(6):455-7
  • Levey A, Lah J, Goldstein F, et al. Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer's disease. Clin Ther 2006;28(7):991-1001
  • Raschetti R, Albanese E, Vanacore N, Maggini M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med 2007;4(11):e338. Published online November 27, 2007, doi:10.1371/journal.pmed.0040338

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.