251
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines

& , PhD
Pages 179-190 | Published online: 21 Jan 2010

Bibliography

  • Rueckert R. Picornaviridae: the viruses and their replication. In: Fields B, Knipe DM, eds. Virology. New York: Raven Press, 1996; 609-54
  • Pasch A, Frey FJ. Coxsackie B viruses and the kidney – a neglected topic. Nephrol Dial Transplant 2006;21:1184-7
  • Henke A, Jarasch N, Martin U, Recombinant coxsackievirus vectors for prevention and therapy of virus-induced heart disease. Int J Med Microbiol 2008;298:127-34
  • Kim KS, Hufnagel G, Chapman NM, Tracy S. The group B coxsackieviruses and myocarditis. Rev Med Virol 2001;11:355-68
  • O'Connell JB. The role of myocarditis in end-stage dilated cardiomyopathy. Tex Heart Inst J 1987;14:268-75
  • Sole MJ, Liu P. Viral myocarditis: a paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy. J Am Coll Cardiol 1993;22:99-105
  • Gillum RF. Idiopathic cardiomyopathy in the United States, 1970 – 1982. Am Heart J 1986;111:752-5
  • Whitton JL, Feuer R. Myocarditis, microbes and autoimmunity. Autoimmunity 2004;37:375-86
  • Martino T, liu P, Sole MJ. Enteroviral myocarditis and dilated cardiomyopathy: a review of clinical and experimental studies. In Human Enterovirus Infections, Robert H, ed. Washington,DC: ASM, 1995;291-351
  • Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol Mech Dis 2008;3:125-53
  • Lyden DC, Olszewski J, Feran M, Coxsackievirus B-3-induced myocarditis. Effect of sex steroids on viremia and infectivity of cardiocytes. Am J Pathol 1987;126:432-8
  • Huber SA, Pfaeffle B. Differential Th1 and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3. J Virol 1994;68:5126-32
  • Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr 2003;133:S1463-7
  • Vasiljevic JD, Kanjuh V, Seferovic P, The incidence of myocarditis in endomyocardial biopsy samples from patients with congestive heart failure. Am Heart J 1990;120:1370-77
  • Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol 1987;18:619-24
  • Paul AV, Van Boom JH, Filippov D, Wimmer E. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 1998;393:280-4
  • Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988;334:320-5
  • Dan M, Chantler JK. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J Virol 2005;79:9285-95
  • Knowlton KU, Jeon ES, Berkley N, A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J Virol 1996;70:7811-18
  • Stadnick E, Dan M, Sadeghi A, Chantler JK. Attenuating mutations in coxsackievirus B3 map to a conformational epitope that comprises the puff region of VP2 and the knob of VP3. J Virol 2004;78:13987-4002
  • Sherry B, Rueckert RR. Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 1985;53:137-43
  • Minor PD, Ferguson M, Evans DM, Antigenic structure of polioviruses of serotypes 1, 2, and 3. J Gen Virol 1986;67:1283-91
  • Sherry B, Mosser AG, Colonno RJ, Rueckert RR. Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornaviruses of serotypes 1, 2, and 3. J Virol 1986;57:246-57
  • Chung SK, Kim JY, Kim IB, Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 2005;333:31-40
  • Coyne CB, Bergelson JM. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006;124:119-31
  • Shi Y, Chen C, Lisewski U, Cardiac deletion of the Coxsackievirus-adenovirus receptor abolishes Coxsackievirus B3 infection and prevents myocarditis in vivo. J Am Coll Cardiol 2009;53:1219-26
  • Fairweather D, Yusung S, Frisancho S, IL-12 receptor beta1 and Toll-like receptor 4 increase IL-1 beta- and IL-18-associated myocarditis and coxsackievirus replication. J Immunol 2003;170:4731-7
  • Triantafilou K, Orthopoulos G, Vakakis E, Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell Microbiol 2005;7:1117-26
  • Vella C, Festenstein H. Coxsackievirus B4 infection of the mouse pancreas: the role of natural killer cells in the control of virus replication and resistance to infection. J Gen Virol 1992;73:1379-86
  • Huber S. T cells in coxsackievirus induced myocarditis. Viral Immunol 2004;17:152-64
  • Huber SA, Sartini D. Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis. J Virol 2005;79:2659-65
  • Tam PE. Coxsackievirus myocarditis: Interplay between virus and host in the pathogenesis of heart disease. Viral Immunol 2006;19:133-46
  • Mena I, Perry CM, Harkin S, The role of B lymphocytes in coxsackievirus B3 infection. Am J Pathol 1999;155:1205-15
  • Opavsky MA, Penninger J, Aitken K, Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ Res 1999;85:551-8
  • Paque RE, Gauntt CJ, Nealon TJ. Assessment of cell-mediated immunity against coxsackievirus B3-induced myocarditis in a primate model (Papio papio). Infect Immun 1981;31:470-9
  • Fohlman J, Ilback NG, Friman G, Morein B. Vaccination of Balb/c mice against enteroviral mediated myocarditis. Vaccine 1990;8:381-4
  • Henke A, Jarasch N, Wutzler P. Coxsackievirus B3 vaccines: use as an expression vector for prevention of myocarditis. Expert Rev Vaccines 2008;7:1557-67
  • Fohlman J, Pauksen K, Morein B, High yield production of an inactivated coxsackie B3 adjuvant vaccine with protective effect against experimental myocarditis. Scand J Infect Dis Suppl 1993;88:103-8
  • See DM, Tilles JG. Occurrence of coxsackievirus hepatitis in baby rabbits and protection by a formalin-inactivated polyvalent vaccine. Proc Soc Exp Biol Med 1997;21:52-6
  • Henke A, Wagner E, Whitton JL, Protection of mice against lethal coxsackievirus B3 infection by using DNA immunization. J Virol 1998;72:8327-31
  • Henke A, Zell R, Stelzner A. DNA vaccine-mediated immune responses in coxsackievirus B3-infected mice. Antiviral Res 2001;49:49-54
  • Kim JY, Jeon ES, Kim BK, Immunogenicity of a DNA vaccine for coxsackievirus B3 in mice: protective effects of capsid proteins against viral challenge. Vaccine 2005;23:1672-9
  • Xu W, Shen Y, Jiang Z, Intranasal delivery of chitosan-DNA vaccine generates mucosal SIgA and anti-CVB3 protection. Vaccine 2004;22:3603-12
  • Hunziker IP, Harkins S, Feuer R, Generation and analysis of a RNA vaccine that protects against coxsackievirus B3 challenge. Virology 2004;330:196-208
  • Kim YJ, Ahn J, Jeung SY, Recombinant lentivirus-delivered short hairpin RNAs targeted to conserved coxsackievirus sequences protect against viral myocarditis and improve survival rate in an animal model. Virus Genes 2008;36:141-6
  • Cambridge G, MacArthur CG, Waterson AP, Antibodies to coxsackie B viruses in congestive cardiomyopathy. Br Heart J 1979;41:962-6
  • Wesselen L, Waldenstrom A, Lindblom B, Genotypic and serotypic profile in dilated cardiomyopathy. Scand J Infect Dis 1993;88(Suppl):87-91
  • Park JH, Kim DS, Cho YJ, Attenuation of coxsackievirus B3 by VP2 mutation and its application as a vaccine against virus-induced myocarditis and pancreatitis. Vaccine 2009;27:1974-83
  • Bukreyev A, Belyakov IM. Expression of immunomodulating molecules by recombinant viruses: can the immunogenicity of live virus vaccines be improved? Expert Rev Vaccines 2002;1:233-45
  • Trousdale MD, Paque RE, Gauntt CJ. Isolation of coxsackievirus B3 temperature-sensitive mutants and their assignment to complementation group. Biochem Biophys Res Commun 1977;76:368-75
  • Gauntt CJ, Trousdale MD, Lee JC, Paque RE. Preliminary characterization of coxsackievirus B3 temperature-sensitive mutants. J Virol 1983;45:1037-47
  • Trousdale MD, Paque RE, Nealon T, Gauntt CJ. Assessment of coxsackievirus B3 ts mutants for induction of myocarditis in a murine model. Infect Immun 1979;23:486-95
  • Gauntt CJ, Paque RE, Trousdale MD, Temperature-sensitive mutant of coxsackievirus B3 establishes resistance in neonatal mice that protects them during adolescence against coxsackievirus B3-induced myocarditis. Infect Immun 1983;39:851-64
  • Godeny EK, Arizpe HM, Gauntt CJ. Characterization of the antibody response in vaccinated mice protected against coxsackievirus B3-induced myocarditis. Viral Immunol 1987/1988;1:305-14
  • Gauntt CJ, Trousdale MD, LaBadie DRL, Properties of coxsackievirus B3 variants which are amyocarditic or myocarditic for mice. J Med. Virol 1979;3:207-20
  • Chapman NM, Tu Z, Tracy S, Gauntt CJ. An infectious cDNA copy of the genome of a non cardiovirulent coxsackievirus B3 strain: its complete sequence analysis and comparison to the genomes of cardiovirulent coxsackieviruses. Arch Virol 1994;135:115-30
  • Tu Z, Chapman NM, Hufnagel G, The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. J Virol 1995;69:4607-18
  • Seo IS, Jee YM, Ahn JH. Mutation variants generated from nonvirulent coxsackievirus B3 acquire virulence phenotypes by active virus replication. Intervirology 2007;50:447-53
  • Chapman NM, Romero JR, Pallansch MA, Tracy S. Sites other than nucleotide 234 determine cardiovirulence in natural isolates of coxsackievirus B3. J Med Virol 1997;52:258-61
  • Dunn JJ, Chapman NM, Tracy S, Romero JR. Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5′ nontranslated region. J Virol 2000;74:4787-94
  • Dunn JJ, Bradrick SS, Chapman NM, The stem loop II within the 5′ nontranslated region of clinical coxsackievirus B3 genomes determines cardiovirulence phenotype in a murine model. J Infect Dis 2003;187:1552-61
  • Lee CK, Kono K, Haas E, Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. J Gen Virol 2005;86:197-210
  • Zhang HY, Yousef GE, Cunningham L, Attenuation of a reactivated cardiovirulent coxsackievirus B3: the 5′-nontranslated region does not contain major attenuation determinants. J Med Virol 1993;41:129-37
  • Zhang H, Blake NW, Ouyang X, A single amino acid substitution in the capsid protein VP1 of Coxsackievirus B3 (CVB3) alters plaque phenotype in Vero cells but not cardiovirulence in a mouse model. Arch Virol 1995;140:959-66
  • Cameron-Wilson CL, Pandolfino YA, Zhang HY, Nucleotide sequence of an attenuated mutant of coxsackievirus B3 compared with the cardiovirulent wildtype: assessment of candidate mutations by analysis of a revertant to cardiovirulence. Clin Diagn Virol 1998;9:99-105
  • Zhang H, Morgan-Capner P, Latif N, Coxsackievirus B3-induced myocarditis. Characterization of stable attenuated variants that protect against infection with the cardiovirulent wild-type strain. Am J Pathol 1997;150:2197-207
  • Reagan KJ, Goldberg B, Crowell RL. Altered receptor specificity of Coxsackievirus B3 after growth in rhabdomyosarcoma cells. J Virol 1984;49:635-40
  • Landau BJ, Whittier PS, Finkelstein SD, Induction of heterotypic virus resistance in adult inbred mice immunized with a variant of Coxsackievirus B3. Microb Pathog 1990;8:289-98
  • Bergelson JM, Mohanty JG, Crowell RL, Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55) J Virol 1995;69:1903-6
  • Lindberg AM, Crowell RL, Zell R, Mapping of the RD phenotype of the Nancy strain of coxsackievirus B3. Virus Res 1992;24:187-96
  • Van Houten N, Bouchard PE, Moraska A, Huber SA. Selection of an attenuated coxsackievirus B3 variant, using a monoclonal antibody reactive to myocyte antigen. J Virol 1991;65:1286-90
  • Huber SA, Mortensen A, Moulton G. Modulation of cytokine expression by CD4+ T cells during coxsackievirus B3 infections of BALB/c mice initiated by cells expressing the gammaδ+ T-cell receptor. J Virol 1996;70:3039-44
  • Huber SA, Feldman AM, Sartini D. Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-transgenic mice. Circ Res 2006;99:1109-16
  • Huber SA, Moraska A, Choate M. T cells expressing the gammaδ T-cell receptor potentiate coxsackievirus B3-induced myocarditis. J Virol 1992;66:6541-6
  • Yang D, Wilson JE, Anderson DR, In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5′-untranslated region of coxsackievirus B3. Virology 1997;228:63-73
  • Liu Z, Carthy CM, Cheung P, Structural and functional analysis of the 5′ untranslated region of coxsackievirus B3 RNA: in vivo translational and infectivity studies of full-length mutants. Virology 1999;265:206-17
  • M'hadheb-Gharbi MB, El Hiar R, Paulous S, Role of GNRA motif mutations within stem-loop V of internal ribosome entry segment in coxsackievirus B3 molecular attenuation. J Mol Microbiol Biotechnol 2008;14:147-56
  • Malnou CE, Poyry TAA, Jackson RJ, Kean MK. Poliovirus internal ribosome entry segment structure alterations that specifically affect function in neuronal cells: molecular genetic analysis. J Virol 2002;76:10617-26
  • Lanier LL. Viral immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling in cell transformation and cancer. Trends Cell Biol 2006;16:388-90
  • Girn J, Kavoosi M, Chantler J. Enhancement of coxsackievirus B3 infection by antibody to a different coxsackievirus strain. J Gen Virol 2002;83:351-8
  • Jarasch N, Martin U, Zell R, Influence of pan-caspase inhibitors on coxsackievirus B3-infected CD19+ B lymphocytes. Apoptosis 2007;12:1633-43
  • Huisman W, Martina BEE, Rimmelzwaan GF, Vaccine-induced enhancement of viral infections. Vaccine 2009;27:505-12
  • Nachman MW, Crowell SL. Estimate of the mutation rate per nucleotide in humans. Genetics 2000;156:297-304
  • Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics 1998;148:1667-86
  • Kim KS, Tracy S, Tapprich W, 5′-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 2005;79:7024-41
  • Alvarez FL, Neu N, Rose NR, Heart-specific autoantibodies induced by Coxsackievirus B3: identification of heart autoantigens. Clin Immunol Immunopathol 1987;43:129-39
  • Neu N, Beisel KW, Traystman MD, Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis. J Immunol 1987;138:2488-92
  • Beisel KW, Srinivasappa J, Olsen MR, A neutralizing monoclonal antibody against Coxsackievirus B4 cross-reacts with contractile muscle proteins. Microb Pathog 1990;8:151-6
  • Henke A, Jarasch N, Wutzler P. Vaccination procedures against coxsackievirus-induced heart disease. Expert Rev Vaccines 2003;2:805-15
  • Chapman NM, Kim KS, Tracy S, Coxsackievirus expression of the murine secretory protein interleukin-4 induces increased synthesis of immunoglobulin G1 in mice. J Virol 2000;74:7952-62
  • Höfling K, Tracy S, Chapman N, Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J Virol 2000;74:4570-8
  • Henke A, Zell R, Ehrlich G, Stelzner A. Expression of immunoregulatory cytokines by recombinant Coxsackievirus B3 variants confers protection against virus-induced myocarditis. J Virol 2001;75:8187-94
  • Henke A, Zell R, Martin U, Stelzner A. Direct interferon-gamma-mediated protection caused by a recombinant coxsackievirus B3. Virology 2003;315:335-44
  • Suguitan AL Jr, McAuliffe J, Mills KL, Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med 2006;3:1541-55
  • Johnson PR, Feldman S, Thompson JM, Immunity to influenza A virus infection in young children: a comparison of natural infection, live cold-adapted vaccine, and inactivated vaccine. J Infect Dis 1986;154:121-7
  • van Ooij MJ, Vogt DA, Paul A, Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. J Gen Virol 2006;87:103-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.