248
Views
35
CrossRef citations to date
0
Altmetric
Reviews

RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA?

, , &
Pages 201-213 | Published online: 21 Jan 2010

Bibliography

  • Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol 2007;25(12):1444-54
  • Scherer L, Rossi JJ, Weinberg MS. Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther 2007;14(14):1057-64
  • Anderson J, Li MJ, Palmer B, Safety and efficacy of a lentiviral vector containing three anti-HIV genes–CCR5 ribozyme, tat-rev siRNA, and TAR decoy–in SCID-hu mouse-derived T cells. Mol Ther 2007;15(6):1182-8
  • Manjunath N, Kumar P, Lee SK, Shankar P. Interfering antiviral immunity: application, subversion, hope? Trends Immunol 2006;27(7):328-35
  • Shankar P, Manjunath N, Lieberman J. The prospect of silencing disease using RNA interference. JAMA 2005;293(11):1367-73
  • Kumar P, Ban HS, Kim SS, T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008;134(4):577-86
  • Song E, Lee SK, Dykxhoorn DM, Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 2003;77(13):7174-81
  • Lee SK, Dykxhoorn DM, Kumar P, Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 2005;106(3):818-26
  • Singh SK. RNA interference and its therapeutic potential against HIV infection. Expert Opin Biol Ther 2008;8(4):449-61
  • Huang DD. The potential of RNA interference-based therapies for viral infections. Curr HIV/AIDS Rep 2008;5(1):33-9
  • Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 2005;56:401-23
  • Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol 2007;25(12):1435-43
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457(7228):426-33
  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17(24):3011-6
  • Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404(6775):293-6
  • Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell 2004;117(1):1-3
  • Novina CD, Murray MF, Dykxhoorn DM, siRNA-directed inhibition of HIV-1 infection. Nat Med 2002;8(7):681-6
  • Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002;99(9):6047-52
  • Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002;169(9):5196-201
  • Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002;418(6896):435-8
  • Yamamoto T, Miyoshi H, Yamamoto N, Lentivirus vectors expressing short hairpin RNAs against the U3-overlapping region of HIV nef inhibit HIV replication and infectivity in primary macrophages. Blood 2006;108(10):3305-12
  • Lee NS, Dohjima T, Bauer G, Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002;20(5):500-5
  • Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002;76(18):9225-31
  • Boden D, Pusch O, Ramratnam B. HIV-1-specific RNA interference. Curr Opin Mol Ther 2004;6(4):373-80
  • Surabhi RM, Gaynor RB. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol 2002;76(24):12963-73
  • Hu WY, Myers CP, Kilzer JM, Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002;12(15):1301-11
  • ter Brake O, t Hooft K, Liu YP, Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008;16(3):557-64
  • von Eije KJ, ter Brake O, Berkhout B. Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J Virol 2008;82(6):2895-903
  • Boden D, Pusch O, Lee F, Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003;77(21):11531-5
  • Das AT, Brummelkamp TR, Westerhout EM, Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004;78(5):2601-5
  • Westerhout EM, Ooms M, Vink M, HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005;33(2):796-804
  • Sabariegos R, Gimenez-Barcons M, Tapia N, Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs. J Virol 2006;80(2):571-7
  • Chang LJ, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 2005;12(14):1133-44
  • Han WL, Wind-Rotolo M, Kirkman RL, Morrow CD. Inhibition of human immunodeficiency virus type 1 replication by siRNA targeted to the highly conserved primer binding site. Virology 2004;330(1):221-32
  • Dave RS, Pomerantz RJ. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol 2004;78(24):13687-96
  • ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 2006;14(6):883-92
  • Naito Y, Nohtomi K, Onogi T, Optimal design and validation of antiviral siRNA for targeting HIV-1. Retrovirology 2007;4:80. Published online 8 November 2007, doi:10.1186/1742-4690-4-80
  • Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides 2003;13(5):303-12
  • Banerjea A, Li MJ, Bauer G, Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther 2003;8(1):62-71
  • Qin XF, An DS, Chen IS, Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003;100(1):183-8
  • Anderson J, Banerjea A, Planelles V, Akkina R. Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA. AIDS Res Hum Retroviruses 2003;19(8):699-706
  • Zhou N, Fang J, Mukhtar M, Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther 2004;11(23):1703-12
  • Huang Y, Paxton WA, Wolinsky SM, The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996;2(11):1240-3
  • Hutter G, Nowak D, Mossner M, Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360(7):692-8
  • Garred P, Eugen-Olsen J, Iversen AK, Dual effect of CCR5 Δ32 gene deletion in HIV-1-infected patients. Lancet 1997;349(9069):1884
  • Samson M, Libert F, Doranz BJ, Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996;382(6593):722-5
  • Eugen-Olsen J, Iversen AK, Garred P, Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS 1997;11(3):305-10
  • Arien KK, Gali Y, El-Abdellati A, Replicative fitness of CCR5-using and CXCR4-using human immunodeficiency virus type 1 biological clones. Virology 2006;347(1):65-74
  • Anderson J, Akkina R. CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2005;2:53. Published online 18 August 2005, doi:10.1186/1742-4690-2-53
  • Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 2000;5(2):107-14
  • Lapidot T. Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann NY Acad Sci 2001;938:83-95
  • Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice. Leukemia 2002;16(10):1992-2003
  • Kahn J, Byk T, Jansson-Sjostrand L, Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 2004;103(8):2942-9
  • Li Z, Xiong Y, Peng Y, Specific inhibition of HIV-1 replication by short hairpin RNAs targeting human cyclin T1 without inducing apoptosis. FEBS Lett 2005;579(14):3100-6
  • Ping YH, Chu CY, Cao H, Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5. Retrovirology 2004;1:46
  • Chiu YL, Cao H, Jacque JM, Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 2004;78(5):2517-29
  • Telenti A, Goldstein DB. Genomics meets HIV-1. Nat Rev Microbiol 2006;4(11):865-73
  • Brass AL, Dykxhoorn DM, Benita Y, Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008;319(5865):921-6
  • Lengauer T, Sander O, Sierra S, Bioinformatics prediction of HIV coreceptor usage. Nat Biotechnol 2007;25(12):1407-10
  • Akkina R, Banerjea A, Bai J, siRNAs, ribozymes and RNA decoys in modeling stem cell-based gene therapy for HIV/AIDS. Anticancer Res 2003;23(3A):1997-2005
  • Li MJ, Kim J, Li S, Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005;12(5):900-9
  • Anderson JS, Javien J, Nolta JA, Bauer G. Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5α protein, a CCR5 shRNA, and a TAR decoy. Mol Ther 2009;17(12):2103-14
  • Chang CI, Kang HS, Ban C, Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses. Mol Cells 2009;27(6):689-95
  • Kim DH, Behlke MA, Rose SD, Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005;23(2):222-6
  • Rose SD, Kim DH, Amarzguioui M, Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 2005;33(13):4140-56
  • Kirchhoff F. Silencing HIV-1 in vivo. Cell 2008;134(4):566-8
  • Grimm D, Kay MA. Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 2007;117(12):3633-41
  • Dykxhoorn DM, Lieberman J. Silencing viral infection. PLoS Med 2006;3(7):e242. Published online 25 July 2006, doi:10.1371/journal.pmed.0030242
  • Urban-Klein B, Werth S, Abuharbeid S, RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005;12(5):461-6
  • Peer D, Park EJ, Morishita Y, Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 2008;319(5863):627-30
  • Zimmermann TS, Lee AC, Akinc A, RNAi-mediated gene silencing in non-human primates. Nature 2006;441(7089):111-4
  • Song E, Zhu P, Lee SK, Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005;23(6):709-17
  • Peer D, Zhu P, Carman CV, Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 2007;104(10):4095-100
  • Kim S-S PD, Kumar P, Subramanya S, RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 2009. In Press
  • Heidel JD, Yu Z, Liu JY, Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci USA 2007;104(14):5715-21
  • Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 2007;25(12):1421-34
  • Eguchi A, Meade BR, Chang YC, Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 2009;27(6):567-71
  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007;8(3):173-84
  • Wang QZ, Lv YH, Diao Y, Xu R. The design of vectors for RNAi delivery system. Curr Pharm Des 2008;14(13):1327-40
  • Manjunath N, Wu H, Subramanya S, Shankar P. Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 2009;61(9):732-45
  • Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994;68(1):510-6
  • Bukrinsky M. A hard way to the nucleus. Mol Med 2004;10(1-6):1-5
  • Brenner S, Malech HL. Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim Biophys Acta 2003;1640(1):1-24
  • Miyoshi H, Blomer U, Takahashi M, Development of a self-inactivating lentivirus vector. J Virol 1998;72(10):8150-7
  • Aiken C. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol 1997;71(8):5871-7
  • Maurice M, Verhoeyen E, Salmon P, Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood 2002;99(7):2342-50
  • Verhoeyen E, Dardalhon V, Ducrey-Rundquist O, Cosset FL. IL-7 surface-engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood 2003;101(6):2167-74
  • Morizono K, Bristol G, Xie YM, Antibody-directed targeting of retroviral vectors via cell surface antigens. J Virol 2001;75(17):8016-20
  • Anderson JS, Walker J, Nolta JA, Bauer G. Specific transduction of HIV-susceptible cells for CCR5 knockdown and resistance to HIV infection: a novel method for targeted gene therapy and intracellular immunization. J Acquir Immune Defic Syndr 2009;52(2):152-61
  • Morizono K, Xie Y, Helguera G, A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide. J Gene Med 2009;11(8):655-63
  • Westerhout EM, Vink M, Haasnoot PC, A conditionally replicating HIV-based vector that stably expresses an antiviral shRNA against HIV-1 replication. Mol Ther 2006;14(2):268-75
  • ter Brake O, Berkhout B. Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 2007;9(9):743-50
  • Giering JC, Grimm D, Storm TA, Kay MA. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008;16(9):1630-6
  • Shimizu S, Kamata M, Kittipongdaja P, Characterization of a potent non-cytotoxic shRNA directed to the HIV-1 co-receptor CCR5. Genet Vaccines Ther 2009;7:8
  • Boden D, Pusch O, Silbermann R, Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 2004;32(3):1154-8
  • Liu YP, Haasnoot J, ter Brake O, Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 2008;36(9):2811-24
  • Aagaard LA, Zhang J, von Eije KJ, Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 2008;15(23):1536-49
  • Son J, Uchil PD, Kim YB, Effective suppression of HIV-1 by artificial bispecific miRNA targeting conserved sequences with tolerance for wobble base-pairing. Biochem Biophys Res Commun 2008;374(2):214-8
  • Stegmeier F, Hu G, Rickles RJ, A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 2005;102(37):13212-7
  • Elbashir SM, Harborth J, Lendeckel W, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8
  • Gupta S, Schoer RA, Egan JE, Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA 2004;101(7):1927-32
  • Unwalla HJ, Li MJ, Kim JD, Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA. Nat Biotechnol 2004;22(12):1573-8
  • Berges BK, Akkina SR, Folkvord JM, Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2–/– gammac–/– (RAG-hu) mice. Virology 2008;373(2):342-51
  • Braun SE, Wong FE, Connole M, Inhibition of simian/human immunodeficiency virus replication in CD4+ T cells derived from lentiviral-transduced CD34+ hematopoietic cells. Mol Ther 2005;12(6):1157-67
  • Anderson J, Akkina R. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection. Gene Ther 2007;14(17):1287-97
  • An DS, Donahue RE, Kamata M, Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA 2007;104(32):13110-5
  • Pichlmair A, Schulz O, Tan CP, RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 2006;314(5801):997-1001
  • Hornung V, Ellegast J, Kim S, 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006;314(5801):994-7
  • Judge A, MacLachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther 2008;19(2):111-24
  • Judge AD, Sood V, Shaw JR, Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23(4):457-62
  • Jackson AL, Burchard J, Leake D, Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 2006;12(7):1197-205
  • Jackson AL, Bartz SR, Schelter J, Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21(6):635-7
  • Svoboda P. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther 2007;9(3):248-57
  • Chen PY, Weinmann L, Gaidatzis D, Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 2008;14(2):263-74
  • Snove O Jr, Rossi JJ. Chemical modifications rescue off-target effects of RNAi. ACS Chem Biol 2006;1(5):274-6
  • Peek AS, Behlke MA. Design of active small interfering RNAs. Curr Opin Mol Ther 2007;9(2):110-8
  • Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides 2008;18(4):305-19
  • Sano M, Sierant M, Miyagishi M, Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 2008;36(18):5812-21
  • Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981;147(1):195-7
  • Naito Y, Yamada T, Matsumiya T, dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 2005;33(Web Server issue):W589-91
  • Rossi JJ. RNAi as a treatment for HIV-1 infection. Biotechniques 2006;40(Suppl. 4):S25-9
  • Bennasser Y, Yeung ML, Jeang KT. RNAi therapy for HIV infection: principles and practicalities. BioDrugs 2007;21(1):17-22
  • An DS, Qin FX, Auyeung VC, Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006;14(4):494-504
  • Grimm D, Streetz KL, Jopling CL, Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441(7092):537-41
  • Modlich U, Navarro S, Zychlinski D, Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009;17(11):1919-28
  • McAnuff MA, Rettig GR, Rice KG. Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci 2007;96(11):2922-30
  • Levine BL, Humeau LM, Boyer J, Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006;103(46):17372-7
  • Miyoshi H, Smith KA, Mosier DE, Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999;283(5402):682-6
  • Ramezani A, Hawley TS, Hawley RG. Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 2003;101(12):4717-24
  • Hino S, Fan J, Taguwa S, Sea urchin insulator protects lentiviral vector from silencing by maintaining active chromatin structure. Gene Ther 2004;11(10):819-28
  • Lotti F, Menguzzato E, Rossi C, Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. J Virol 2002;76(8):3996-4007
  • Huang J, Wang F, Argyris E, Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007;13(10):1241-7
  • Palliser D, Chowdhury D, Wang QY, An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006;439(7072):89-94
  • Wu Y, Navarro F, Lal A, Durable protection from herpes simplex virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host Microbe 2009;5(1):84-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.