550
Views
68
CrossRef citations to date
0
Altmetric
Reviews

More insight into mesenchymal stem cells and their effects inside the body

, , , , , & show all
Pages 215-230 | Published online: 21 Jan 2010

Bibliography

  • Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 2007;25(11):2896-902
  • Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008;2(4):313-9
  • Jiang Y, Jahagirdar BN, Reinhardt RL, Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418(6893):41-9
  • Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3(4):393-403
  • Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276(5309):71-4
  • Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology and potential applications. Stem Cells 2001;19(3):180-92
  • Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64(2):278-94
  • Bruder SP, Kurth AA, Shea M, Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998;16(2):155-62
  • Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9(5):641-50
  • Luria EA, Panasyuk AF, Friedenstein AY. Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 1971;11(6):345-9
  • Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004;22(4):625-34
  • Hida N, Nishiyama N, Miyoshi S, Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 2008;26(7):1695-704
  • Fukuchi Y, Nakajima H, Sugiyama D, Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004;22(5):649-58
  • In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004;22(7):1338-45
  • Kajstura J, Leri A, Finato N, Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 1998;95(15):8801-5
  • Zuk PA, Zhu M, Mizuno H, Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7(2):211-28
  • Young HE, Mancini ML, Wright RP, Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 1995;202(2):137-44
  • Hu Y, Liao L, Wang Q, Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003;141(5):342-9
  • Pierdomenico L, Bonsi L, Calvitti M, Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005;80(6):836-42
  • Brooke G, Tong H, Levesque JP, Atkinson K. Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 2008;17(5):929-40
  • Rebelatto CK, Aguiar AM, Moretao MP, Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 2008;233(7):901-13
  • Musina RA, Bekchanova ES, Belyavskii AV, Sukhikh GT. Differentiation potential of mesenchymal stem cells of different origin. Bull Exp Biol Med 2006;141(1):147-51
  • Brown SE, Tong W, Krebsbach PH. The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs 2009;189(1-4):256-60
  • Dominici M, Le Blanc K, Mueller I, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315-7
  • da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008;26(9):2287-99
  • Caplan AI. All MSCs are pericytes? Cell Stem Cell 2008;3(3):229-30
  • Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol 2009;217(2):318-24
  • Traktuev DO, Merfeld-Clauss S, Li J, A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008;102(1):77-85
  • Tremain N, Korkko J, Ibberson D, MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 2001;19(5):408-18
  • Phinney DG, Hill K, Michelson C, Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells 2006;24(1):186-98
  • Silva WA Jr, Covas DT, Panepucci RA, The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 2003;21(6):661-9
  • Wagner W, Wein F, Seckinger A, Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33(11):1402-16
  • Brendel C, Kuklick L, Hartmann O, Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr 2005;12(4-6):245-57
  • Song L, Webb NE, Song Y, Tuan RS. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells 2006;24(7):1707-18
  • Tsai MS, Hwang SM, Chen KD, Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 2007;25(10):2511-23
  • Panepucci RA, Siufi JL, Silva WA Jr, Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 2004;22(7):1263-78
  • Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008;103(11):1204-19
  • Kinnaird T, Stabile E, Burnett MS, Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94(5):678-85
  • Nagaya N, Kangawa K, Itoh T, Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005;112(8):1128-35
  • Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007;25(10):2648-59
  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98(5):1076-84
  • Korf-Klingebiel M, Kempf T, Sauer T, Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 2008;29(23):2851-8
  • Gnecchi M, He H, Liang OD, Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005;11(4):367-8
  • Ohnishi S, Yanagawa B, Tanaka K, Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol 2007;42(1):88-97
  • Molloy AP, Martin FT, Dwyer RM, Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 2009;124(2):326-32
  • Kasper G, Glaeser JD, Geissler S, Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells 2007;25(8):1985-94
  • Ries C, Egea V, Karow M, MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 2007;109(9):4055-63
  • De Becker A, Van Hummelen P, Bakkus M, Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 2007;92(4):440-9
  • Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res 2004;32(21):6284-91
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008;9(2):102-14
  • Niwa R, Slack FJ. The evolution of animal microRNA function. Curr Opin Genet Dev 2007;17(2):145-50
  • Laurent LC. MicroRNAs in embryonic stem cells and early embryonic development. J Cell Mol Med 2008;12(6A):2181-8
  • Rogler CE. MicroRNAs make inroads into liver development. Gastroenterology 2009;136(3):770-2
  • Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008;452(7184):225-9
  • Xu N, Papagiannakopoulos T, Pan G, MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009;137(4):647-58
  • Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 2009;27(5):459-61
  • Lin EA, Kong L, Bai XH, miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem 2009;284(17):11326-35
  • Sun F, Wang J, Pan Q, Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun 2009;380(3):660-5
  • Kim YJ, Bae SW, Yu SS, miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 2009;24(5):816-25
  • Shilo S, Roy S, Khanna S, Sen CK. MicroRNA in cutaneous wound healing: a new paradigm. DNA Cell Biol 2007;26(4):227-37
  • Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett 2008;582(30):4137-42
  • Fang LJ, Fu XB, Sun TZ, In vitro study on differentiation of bone marrow mesenchymal stem cells into epidermal cells. Zhonghua Chuang Shang Za Zhi 2003;19(3):212-4
  • Badiavas EV, Abedi M, Butmarc J, Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003;196(2):245-50
  • Li Y, Chen J, Chopp M. Adult bone marrow transplantation after stroke in adult rats. Cell Transplant 2001;10(1):31-40
  • Chen J, Sanberg PR, Li Y, Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001;32(11):2682-8
  • Kinnaird T, Stabile E, Burnett MS, Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004;109(12):1543-9
  • Nagaya N, Fujii T, Iwase T, Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004;287(6):H2670-6
  • Togel F, Weiss K, Yang Y, Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007;292(5):F1626-35
  • Urban VS, Kiss J, Kovacs J, Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 2008;26(1):244-53
  • Ma Y, Xu Y, Xiao Z, Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 2006;24(2):315-21
  • Schneider RK, Neuss S, Stainforth R, Three-dimensional epidermis-like growth of human mesenchymal stem cells on dermal equivalents: contribution to tissue organization by adaptation of myofibroblastic phenotype and function. Differentiation 2008;76(2):156-67
  • Imitola J, Raddassi K, Park KI, Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004;101(52):18117-22
  • Cui X, Chopp M, Zacharek A, Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis 2009;36(1):35-41
  • Shichinohe H, Kuroda S, Yano S, Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 2007;1183:138-47
  • Sordi V, Malosio ML, Marchesi F, Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005;106(2):419-27
  • Wynn RF, Hart CA, Corradi-Perini C, A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004;104(9):2643-5
  • Grunewald M, Avraham I, Dor Y, VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006;124(1):175-89
  • Toksoy A, Muller V, Gillitzer R, Goebeler M. Biphasic expression of stromal cell-derived factor-1 during human wound healing. Br J Dermatol 2007;157(6):1148-54
  • Hill WD, Hess DC, Martin-Studdard A, SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 2004;63(1):84-96
  • Cui X, Chen J, Zacharek A, Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells 2007;25(11):2777-85
  • Askari AT, Unzek S, Popovic ZB, Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003;362(9385):697-703
  • Unzek S, Zhang M, Mal N, SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo. Cell Transplant 2007;16(9):879-86
  • Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 2008;1195:104-12
  • Cui X, Chen J, Zacharek A, Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke. J Neurosci Res 2009;87(1):86-95
  • Otsuru S, Tamai K, Yamazaki T, Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells 2008;26(1):223-34
  • Ponte AL, Marais E, Gallay N, The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007;25(7):1737-45
  • Potapova IA, Brink PR, Cohen IS, Doronin SV. Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J Biol Chem 2008;283(19):13100-7
  • Lee BC, Hsu HC, Tseng WY, Cell therapy generates a favourable chemokine gradient for stem cell recruitment into the infarcted heart in rabbits. Eur J Heart Fail 2009;11(3):238-45
  • Cheng Z, Ou L, Zhou X, Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 2008;16(3):571-9
  • Pittenger MF, Mackay AM, Beck SC, Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7
  • Chien CC, Yen BL, Lee FK, In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 2006;24(7):1759-68
  • Sgodda M, Aurich H, Kleist S, Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 2007;313(13):2875-86
  • Li Y, Zhang R, Qiao H, Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 2007;211(1):36-44
  • Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007;25(11):2837-44
  • Popp FC, Slowik P, Eggenhofer E, No contribution of multipotent mesenchymal stromal cells to liver regeneration in a rat model of prolonged hepatic injury. Stem Cells 2007;25(3):639-45
  • Tuch BE, Keogh GW, Williams LJ, Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 2009;32(10):1887-9
  • Liu D, Wang F, Zou Z, Bone marrow derivation of interstitial cells of Cajal in small intestine following intestinal injury. Neurogastroenterol Motil 2009; under revision
  • Nevo Z, Robinson D, Horowitz S, The manipulated mesenchymal stem cells in regenerated skeletal tissues. Cell Transplant 1998;7(1):63-70
  • Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann NY Acad Sci 2007;1117:62-72
  • Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 1997;6(2):125-34
  • Mackay AM, Beck SC, Murphy JM, Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 1998;4(4):415-28
  • Ju YJ, Muneta T, Yoshimura H, Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res 2008;332(3):469-78
  • Nesti LJ, Li WJ, Shanti RM, Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A 2008;14(9):1527-37
  • Horwitz EM, Gordon PL, Koo WK, Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002;99(13):8932-7
  • Le Blanc K, Samuelsson H, Gustafsson B, Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 2007;21(8):1733-8
  • Slater BJ, Kwan MD, Gupta DM, Mesenchymal cells for skeletal tissue engineering. Expert Opin Biol Ther 2008;8(7):885-93
  • Tao F, Li F, Li G, Pan F. Differentiation of mesenchymal stem cells into nucleus pulposus cells in vitro. J Huazhong Univ Sci Technolog Med Sci 2008;28(2):156-8
  • Yang Q, Peng J, Guo Q, A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 2008;29(15):2378-87
  • Yamasaki T, Deie M, Shinomiya R, Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J Biomed Mater Res A 2005;75(1):23-30
  • Kuo TK, Ho JH, Lee OK. Mesenchymal stem cell therapy for non-musculoskeletal diseases: emerging applications. Cell Transplant 2009, doi: CT-1973 [pii]
  • Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2009;218(2):237-45
  • Sasaki M, Honmou O, Kocsis JD. A rat middle cerebral artery occlusion model and intravenous cellular delivery. Methods Mol Biol 2009;549:187-95
  • Chen J, Li Y, Wang L, Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 2001;189(1-2):49-57
  • Chen J, Li Y, Wang L, Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001;32(4):1005-11
  • Lee ES, Chan J, Shuter B, Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. Stem Cells 2009;27(8):1921-31
  • Kurozumi K, Nakamura K, Tamiya T, BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004;9(2):189-97
  • Keimpema E, Fokkens MR, Nagy Z, Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol 2009;35(1):89-102
  • Horita Y, Honmou O, Harada K, Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 2006;84(7):1495-504
  • Kang SK, Lee DH, Bae YC, Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 2003;183(2):355-66
  • Chen J, Zhang ZG, Li Y, Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 2003;92(6):692-9
  • Liao W, Xie J, Zhong J, Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 2009;87(3):350-9
  • Deng YB, Ye WB, Hu ZZ, Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res 2009: published online 26 May 2009 doi: 10.1179/174313209X414434
  • Pavlichenko N, Sokolova I, Vijde S, Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res 2008;1233:203-13
  • Kurozumi K, Nakamura K, Tamiya T, Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005;11(1):96-104
  • Hayase M, Kitada M, Wakao S, Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 2009;29(8):1409-20
  • Liu H, Honmou O, Harada K, Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 2006;129(Pt 10):2734-45
  • Toyama K, Honmou O, Harada K, Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol 2009;216(1):47-55
  • Yasuhara T, Matsukawa N, Hara K, Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev 2009: published online March 20, 2009, doi:10.1089/scd.2009.0011
  • Fu X, Li H. Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res 2009;335(2):317-21
  • Fu X, Fang L, Li X, Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen 2006;14(3):325-35
  • Li H, Fu X, Ouyang Y, Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res 2006;326(3):725-36
  • Ouyang YS, Jia CY, Qi KM, Fu XB. The involvement of ERK pathway in the cellular phenotype conversion in human mesenchymal stem cells cocultured with human sweat gland cells. Zhonghua Shao Shang Za Zhi 2006;22(5):347-50
  • Crigler L, Kazhanie A, Yoon TJ, Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 2007;21(9):2050-63
  • Sheng ZY, Fu XB, Cai S, Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Rep Reg 2009;17(3):427-35
  • Al-Khaldi A, Eliopoulos N, Martineau D, Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 2003;10(8):621-9
  • Wang M, Su Y, Sun H, Induced endothelial differentiation of cells from a murine embryonic mesenchymal cell line C3H/10T1/2 by angiogenic factors in vitro. Differentiation 2009: published online 1 September 2009 doi:10.1016/j.diff.2009.08.002
  • Oswald J, Boxberger S, Jorgensen B, Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004;22(3):377-84
  • Dufourcq P, Descamps B, Tojais NF, Secreted frizzled-related protein-1 enhances mesenchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells 2008;26(11):2991-3001
  • Zappia E, Casazza S, Pedemonte E, Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005;106(5):1755-61
  • Wang XJ, Dong Z, Zhong XH, Transforming growth factor-beta1 enhanced vascular endothelial growth factor synthesis in mesenchymal stem cells. Biochem Biophys Res Commun 2008;365(3):548-54
  • Potapova IA, Gaudette GR, Brink PR, Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 2007;25(7):1761-8
  • Lozito TP, Kuo CK, Taboas JM, Tuan RS. Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem 2009;107(4):714-22
  • Ringden O, Uzunel M, Sundberg B, Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia 2007;21(11):2271-6
  • Caplan AI. New era of cell-based orthopaedic therapies. Tissue Eng Part B Rev 2009;15(2):195-200
  • Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008;111(9):4551-8
  • Ozerdem U, Alitalo K, Salven P, Li A. Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci 2005;46(10):3502-6
  • Sorrell JM, Baber MA, Caplan AI. Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 2009;15(7):1751-61
  • Zipori D. Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells Mol Dis 2004;33(3):211-5
  • Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007;262(5):509-25
  • Muller I, Lymperi S, Dazzi F. Mesenchymal stem cell therapy for degenerative inflammatory disorders. Curr Opin Organ Transplant 2008;13(6):639-44
  • Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med 2008;3(4):531-46
  • Toubai T, Paczesny S, Shono Y, Mesenchymal stem cells for treatment and prevention of graft-versus-host disease after allogeneic hematopoietic cell transplantation. Curr Stem Cell Res Ther 2009;4(4):252-9
  • Bartholomew A, Sturgeon C, Siatskas M, Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30(1):42-8
  • Yanez R, Lamana ML, Garcia-Castro J, Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 2006;24(11):2582-91
  • Le Blanc K, Rasmusson I, Sundberg B, Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363(9419):1439-41
  • Le Blanc K, Frassoni F, Ball L, Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008;371(9624):1579-86
  • Xiong Y, Qu C, Mahmood A, Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats. Brain Res 2009;1263:183-91
  • Le Blanc K, Tammik L, Sundberg B, Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57(1):11-20
  • Tse WT, Pendleton JD, Beyer WM, Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003;75(3):389-97
  • Di Nicola M, Carlo-Stella C, Magni M, Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99(10):3838-43
  • Krampera M, Cosmi L, Angeli R, Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006;24(2):386-98
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105(4):1815-22
  • Bocelli-Tyndall C, Bracci L, Spagnoli G, Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology (Oxford) 2007;46(3):403-8
  • Meisel R, Zibert A, Laryea M, Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004;103(12):4619-21
  • Djouad F, Plence P, Bony C, Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102(10):3837-44
  • Nauta AJ, Kruisselbrink AB, Lurvink E, Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 2006;177(4):2080-7
  • Maccario R, Podesta M, Moretta A, Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005;90(4):516-25
  • Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003;76(8):1208-13
  • Sotiropoulou PA, Perez SA, Gritzapis AD, Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006;24(1):74-85
  • Coyne TM, Marcus AJ, Reynolds K, Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain. Transplantation 2007;84(11):1507-16
  • Coyne TM, Marcus AJ, Woodbury D, Black IB. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 2006;24(11):2483-92
  • Kawai T, Cosimi AB, Spitzer TR, HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 2008;358(4):353-61
  • Covas DT, Panepucci RA, Fontes AM, Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642-54
  • Jeong JA, Hong SH, Gang EJ, Differential gene expression profiling of human umbilical cord blood-derived mesenchymal stem cells by DNA microarray. Stem Cells 2005;23(4):584-93
  • Phinney DG. Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion. Methods Mol Biol 2008;449:171-86
  • Jeong JA, Ko KM, Bae S, Genome-wide differential gene expression profiling of human bone marrow stromal cells. Stem Cells 2007;25(4):994-1002
  • Kubo H, Shimizu M, Taya Y, Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells 2009;14(3):407-24
  • Greco SJ, Rameshwar P. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci USA 2007;104(39):15484-9
  • Shan ZX, Lin QX, Yu XY, MicroRNAs can be expressed in cardiomyocyte-like cells differentiated from human mesenchymal stem cells. Nan Fang Yi Ke Da Xue Xue Bao 2007;27(12):1813-6
  • Wagner W, Horn P, Castoldi M, Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 2008;3(5):e2213. Published online 21 May 2008, doi: 10.1371/journal.pone.0002213
  • Schoolmeesters A, Eklund T, Leake D, Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS ONE 2009;4(5):e5605. Published online 19 May 2009, doi: 10.1371/journal.pone.0005605
  • Goff LA, Boucher S, Ricupero CL, Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Exp Hematol 2008;36(10):1354-69
  • Luzi E, Marini F, Sala SC, Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 2008;23(2):287-95
  • Esau C, Kang X, Peralta E, MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004;279(50):52361-5
  • Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 2009;284(29):19272-9
  • Rao PK, Kumar RM, Farkhondeh M, Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 2006;103(23):8721-6
  • Mizuno Y, Yagi K, Tokuzawa Y, miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 2008;368(2):267-72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.