1,054
Views
72
CrossRef citations to date
0
Altmetric
Reviews

Living cardiac patch: the elixir for cardiac regeneration

, MSc, , PhD & , PhD
Pages 1623-1640 | Published online: 06 Sep 2012

Bibliography

  • Lauer MS. Advancing cardiovascular research. Chest 2012;141:500-5
  • Jugdutt BI. Interstitial fibrosis in heart failure. Extracellular matrix and cardiac remodeling. In: Villarreal FJ, editor. Springer Science + Business media, Inc; New York, NY: 2005. p. 23-55
  • Chatterjee K, Massie B. Systolic and diastolic heart failure: differences and similarities. J Card Fail 2007;13:569-76
  • Miner EC, Miller WL. A look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin Proc 2006;81:71-6
  • Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007;87:521-44
  • Porrello ER, Mahmoud AI, Simpson E, Transient regenerative potential of the neonatal mouse heart. Science 2011;331:1078-80
  • Efe JA, Hilcove S, Kim J, Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 2011;13:215-22
  • Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res 2009;105:1164-76
  • Bernstein SA, Morley GE. Gap junctions and propagation of the cardiac action potential. Adv Cardiol 2006;42:71-85
  • Cascio WE, Yang H, Muller-Borer BJ, Ischemia- induced arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation. Electrocardiol 2005;38:55-9
  • Baudino TA, Carver W, Giles W, Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 2006;291:H1015-26
  • Kakkar R, Lee RT. Intramyocardial fibroblast myocyte communication. Circ Res 2010;106:47-57
  • Banerjee I, Fuseler JW, Price RL, Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 2007;293:H1883-91
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004;84:767-801
  • Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009;123:255-78
  • Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003;83:59-115
  • Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 2003;108:1395-403
  • Weisman HF, Bush DE, Mannisi JA, Cellular mechanisms of myocardial infarct expansion. Circulation 1988;78:186-201
  • Cleutjens JP, Kandala JC, Guarda E, Regulation of collagen degradation in the rat myocardium after infarction. J Moll Cell Cardiol 1995;27:1281-92
  • Vanhoutte D, Schellings M, Pinto Y, Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 2006;69:604-13
  • Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 2007;74:184-95
  • Desmouliere A, Redard M, Darby I, Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995;146:56-66
  • Silver MA, Pick R, Brilla CG, Reactive and reparative fibrillar collagen remodelling in the hypertrophied rat left ventricle: two experimental models of myocardial fibrosis. Cardiovasc Res 1990;24:741-7
  • Jugdutt BI, Menon V, Kumar D, Vascular remodeling during healing after myocardial infarction in the dog model: effects of reperfusion, amlodipine and enalapril. J Am Coll Cardiol 2002;39:1538-45
  • Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990;81:1161-72
  • Meizlish JL, Berger HJ, Plankey M, Functional left ventricular aneurysm formation after acute anterior transmural myocardial infarction. Incidence, natural history and prognosis implications. N Eng J Med 1984;311:1001-6
  • Nakatani S. Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound 2011;19:1-6
  • Ho SY. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. Eur J Echocardiogr 2009;10:iii3-7
  • Zhang S, Crow JA, Yang X, The correlation of 3D DT-MRI fiber disruption with structural and mechanical degeneration in porcine myocardium. Ann Biomed Eng 2010;10:3084-95
  • Sanchez-Quintana D, Climent V, Ho SY, Myoarchitecture and connective tissue in hearts with tricuspid atresia. Heart 1999;81:182-91
  • Sanchez-Quintana D, Garcia-Martinez V, Climent V, Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat Rec 1995;243:483-95
  • van den Wijngaard JP, van Horssen P, ter Wee R, Organization and collateralization of a subendocardial plexus in end-stage human heart failure. Am J Physiol Heart Circ Physiol 2010;298:H158-62
  • Sosnovik DE, Wang R, Dai G, Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circ Cardiovasc Imaging 2009;2:206-12
  • Ford LE. Heart size. Circ Res 1976;39:297-303
  • Jugdutt BI. Left ventricular rupture threshold during the healing phase after myocardial infarction in the dog. Can J Physiol Pharmacol 1987;65:307-16
  • Connelly CM, McLaughlin RJ, Vogel WM, Reversible and irreversible elongation of ischemic, infarcted, and healed myocardium in response to increases in preload and afterload. Circulation 1991;84:387-99
  • Jugdutt BI. Effect of nitroglycerin and ibuprofen on left ventricular topography and rupture threshold during healing after myocardial infarction in the dog. Can J Physiol Pharmacol 1988;66:385-95
  • Jugdutt BI, Idikio H, Uwiera RR. Therapeutic drugs during healing after myocardial infarction modify infarct collagens and ventricular distensibility at elevated pressures. Mol Cell Biochem 2007;304:79-91
  • Zong X, Bien H, Chung CY, Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005;26:5330-8
  • Park H, Radisic M, Lim JO, A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev Biol Anim 2005;41:188-96
  • Lee SH, Kim BS, Kim SH, Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res A 2003;66:29-37
  • Kwon IK, Kidoaki S, Matsuda T. Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 2005;26:3929-39
  • Jin J, Jeong SI, Shin YM, Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail 2009;11:147-53
  • Shin YM, Shin H, Lim YM. Surface modification of electrospun poly(L-lactide-co-epsilon-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromol Res 2010;18:472-81
  • Kuppan P, Vasanthan KS, Sundaramurthi D, Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules 2011;12:3156-65
  • Shin YM, Kim KS, Lim YM, Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co- epsilon-caprolactone) substrates. Biomacromolecules 2008;9:1772-81
  • Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 2009;30:4996-5003
  • Zhu Y, Chian KS, Chan-Park MB, Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering. Biomaterials 2006;27:68-78
  • Janmey PA, Miller RT. Mechanisms of mechanical signaling in development and disease. J Cell Sci 2011;124:9-18
  • Holmes JW, Borg TK, Coyell JW. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 2005;7:223-53
  • Forte G, Pagliari S, Ebara M, Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A 2012; doi:10.1089/ten.TEA.2011.0707
  • Hinz B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 2009;11:120-6
  • Sinha Roy R, Soni S, Harfouche R, Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis. Proc Natl Acad Sci USA 2010;107:13608-13
  • Epstein JA. Cardiac development and implications for heart disease. N Engl J Med 2010;363:1638-47
  • Smart N, Bollini S, Dube KN, De novo cardiomyocytesfrom within the activated adult heart after injury. Nature 2011;474:640-4
  • Goldstein AL, Hannappel E, Sosne G, Thymosin beta4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther 2012;12:37-51
  • Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 2005;85:1373-416
  • Orlova Y, Magome N, Liu L, Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 2011;32:5615-24
  • Park H, Larson BL, Guillemette MD, The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. Biomaterials 2011;7:1856-64
  • Yuan Ye K, Sullivan KE, Black LD. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp 2011; doi: 10.3791/3251
  • Patra C, Talukdar S, Novoyatleva T, Silk protein fibroin from antheraea mylitta for cardiac tissue engineering. Biomaterials 2012;9:2673-80
  • Ravichandran R, Venugopal JR, Sundarrajan S, Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. Int J Cardiol 2012; doi: 10.1016/j.bbr.2011.03.031
  • Gaetani R, Doevendans PA, Metz CH, Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 2012;6:1782-90
  • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006;12:1197-211
  • Ji W, Sun Y, Yang F, Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res 2011;28:1259-72
  • Stankus JJ, Guan J, Fujimoto K, Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006;27:735-44
  • Ng KE, Joly P, Jayasinghe SN, Bio-electrospraying primary cardiac cells: In vitro tissue creation and functional study. Biotechnol J 2011;6:86-95
  • Jayasinghe SN, Irvine S, McEwan JR. Cell electrospinning highly concentratedcellular suspensions containing primary living organisms into cell-bearing threads and scaffolds. Nanomedicine (Lond) 2007;2:555-67
  • Sahoo S, Lee WC, Goh JC, Bio-electrospraying: a potentially safe technique for delivering progenitor cells. Biotechnol Bioeng 2010;106:690-8
  • Chen CH, Wei HJ, Lin WW, Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovasc Res 2008;80:88-95
  • Wang B, Tedder ME, Perez CE, Structural and biomechanical characterizations of porcine myocardial extracellular matrix. J Mater Sci Mater Med 2012; doi 10.1007/s10856-012-4660-0
  • Wang B, Borazjani A, Tahai M, Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 2010;4:1100-10
  • Naito H, Melnychenko I, Didie M, Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 2006;114:I72-8
  • Zimmermann WH, Melnychenko I, Wasmeier G, Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 2006;12:452-8
  • Kenar H, Kose GT, Toner M, A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion. Biomaterials 2011;32:5320-9
  • Kwon JS, Park IK, Cho AS, Enhanced angiogenesis mediated by vascular endothelial growth factor plasmid-loaded thermo-responsive amphiphilic polymer in a rat myocardial infarction model. J Control Release 2009;138:168-76
  • Dvir T, Kedem A, Ruvinov E, Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci USA 2009;106:14990-5
  • Tokunaga M, Liu ML, Nagai T, Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 2010;49:972-83
  • Radisic M, Marsano A, Maidhof R, Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 2008;3:719-38
  • Radisic M, Park H, Shing H, Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004;101:18129-34
  • Carrier RL, Papadaki M, Rupnick M, Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999;64:580-9
  • Brown MA, Iyer RK, Radisic M. Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol Prog 2008;24:907-20
  • Tandon N, Marsano A, Maidhof R, Optimization of electrical stimulation parameters for cardiac tissue engineering. J Tissue Eng Regen Med 2011;5:e115-25
  • Herrmann JL, Abarbanell AM, Weil BR, Cell-based therapy for ischemic heart disease: a clinical update. Ann Thorac Surg 2009;88:1714-22
  • Chien KR, Domian IJ, Parker KK. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 2008;322:1494-7
  • Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature 2008;453:322-9
  • Gnecchi M, Zhang Z, Ni A, Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008;103:1204-19
  • Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008;451:937-42
  • Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol 2005;23:845-56
  • Stamm C, Klose K, Choi YH. Clinical application of stem cells in the cardiovascular system. Adv Biochem Eng Biotechnol 2010;123:293-317
  • Available from: www.clinicaltrials.gov
  • Rnjak-Kovacina J, Weiss AS. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev 2011;17:365-72
  • Sundaramurthi D, Vasanthan KS, Kuppan P, Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomed Mater 2012;4:045005
  • Subramanian A, Krishnan UM, Sethuraman S. Fabrication, characterization and in vitro evaluation of aligned PLGA-PCL nanofibers for neural regeneration. Ann Biomed Eng 2012; doi: 10.1007/s10439-012-0592-6
  • Vunjak-Novakovic G, Tandon N, Godier A, Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 2010;16:169-87
  • Saraf H, Ramesh KT, Lennon AM, Mechanical properties of soft human tissues under dynamic loading. J Biomech 2007;40:1960-7
  • Berry MF, Engler AJ, Woo YJ, Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 2006;290:H2196-203
  • Mavrilas D, Sinouris EA, Vynios DH, Dynamic mechanical characteristics of intact and structurally modified bovine pericardial tissues. J Biomech 2005;38:761-8
  • Emery JL, Omens JH, McCulloch AD. Biaxial mechanics of the passively overstretched left ventricle. Am J Physiol 1997;272:H2299-305
  • Mathur AB, Collinsworth AM, Reichert WM, Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 2001;34:1545-53
  • Sjogren AL. Left ventricular wall thickness determined by ultrasound in 100 subjects without heart disease. Chest 1971;60:341-6
  • Chiu YT, Liu SK, Liu M, Characterization and quantitation of extracellular collagen matrix in myocardium of pigs with spontaneously occurring hypertrophic cardiomyopathy. Cardiovasc Pathol 1999;8:169-75
  • Gupta KB, Ratcliffe MB, Fallert MA, Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 1994;89:2315-26
  • Morioka S, Simon G, Echocardiographic evidence for early left ventricular hypertrophy in dogs with renal hypertension. Am J Cardiol 1982;49:1890-5
  • Lutgens E, Daemen MJ, de Muinck ED, Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc Res 1999;41:586-93
  • Sankaran KK, Vasanthan KS, Krishnan UM, Development and evaluation of axially aligned nanofibres for blood vessel tissue engineering. J Tissue Eng Regen Med 2012; doi: 10.1002/term.1566
  • Prabhakaran MP, Kai D, Ghasemi-Mobarakeh L, Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 2011;6:055001
  • Kai D, Prabhakaran MP, Jin G, Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 2011;98B:379-86
  • Sant S, Khademhosseini A. Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications. Conf Proc IEEE Eng Med Biol Soc 2010;2010:3546-8
  • Hidalgo-Bastida LA, Barry JJ, Everitt NM, Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomater 2007;3:457-62
  • Guan J, Wang F, Li Z, The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials 2011;32:5568-80
  • Bat E, Harmsen MC, Plantinga JA, Flexible scaffolds based on poly(trimethylene carbonate) networks for cardiac tissue engineering. J Control Release 2010;148:e74-6
  • Iza M, Stoianovici G, Viora L, Hydrogels of poly (ethylene glycol): mechanical characterization and release of a model drug. J Control Release 1998;52:41-51
  • Hudson JE, Frith JE, Donose BC, A synthetic elastomer based on acrylated polypropylene glycol triol with tunable modulus for tissue engineering applications. Biomaterials 2010;31:7937-47
  • Chen QZ, Bismarck A, Hansen U, Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008;1:47-57
  • Roeder BA, Kokini K, Sturgis JE, Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 2002;124:214-22
  • Urech L, Bittermann AG, Hubbell JA, Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro. Biomaterials 2005;26:1369-79
  • Soofi SS, Last JA, Liliensiek SJ, The elastic modulus of Matrigel as determined by atomic force microscopy. J Struct Biol 2009;167:216-19
  • Banerjee A, Arha M, Choudhary S, The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009;30:4695-9
  • Miyagi Y, Chiu LL, Cimini M, Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 2011;32:1280-90
  • Chang Y, Lai PH, Wei HJ, Tissue regeneration observed in a basic fibroblast growth factor-loaded porous acellular bovine pericardium populated with mesenchymal stem cells. J Thorac Cardiovasc Surg 2007;134:65-73
  • van der Meer P, Lipsic E, Henning RH, Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J Am Coll Cardiol 2005;46:125-33
  • Spadaccio C, Rainer A, Trombetta M, A G-CSF functionalized scaffold for stem cells seeding: a differentiating device for cardiac purposes. J Cell Mol Med 2011;15:1096-108
  • Sakaguchi G, Tambara K, Sakakibara Y, Control-released hepatocyte growth factor prevents the progression of heart failure in stroke-prone spontaneously hypertensive rats. Ann Thorac Surg 2005;79:1627-34
  • Pelosi L, Giacinti C, Nardis C, Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J 2007;21:1393-402
  • Zou Y, Takano H, Mizukami M, Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 2003;108:748-53
  • Tang J, Wang J, Yang J, Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur J Cardiothorac Surg 2009;36:644-50
  • Edelberg JM, Aird WC, Wu W, PDGF mediates cardiacmicrovascular communication. J Clin Invest 1998;102:837-43
  • Shrivastava S, Srivastava D, Olson EN, Thymosin beta4 and cardiac repair. Ann N Y Acad Sci 2010;1194:87-96

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.