729
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Gene therapy for human osteoarthritis: principles and clinical translation

&
Pages 331-346 | Received 05 Oct 2015, Accepted 20 Nov 2015, Published online: 15 Dec 2015

Bibliography

  • Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.
  • Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–2126.
  • Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):269–285.
  • Goldring MB, Marcu KB. Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med. 2011;18(2):109–118.
  • Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–1707.

•• Interesting review on osteoarthritis.

  • Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy. Nat Rev Rheumatol. 2014;10(1):11–22.
  • McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014;22(3):363–388.doi:10.1016/j.joca.2014.01.003.
  • Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234–242.
  • Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil. 2007;15(4):403–413.
  • Mankin HJ. The structure, chemistry and metabolism of articular cartilage. Bull Rheum Dis. 1967;17(7):447–452.
  • Hunziker EB, Quinn TM, Hauselmann HJ. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil. 2002;10(7):564–572.
  • Madry H, Van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419–433.
  • Roughley PJ, Mort JS. The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop. 2014;1:8.
  • Kraus VB, Blanco FJ, Englund M, et al. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr Cartil. 2015;23(8):1233–1241.
  • Pritzker KP, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil. 2006;14(1):13–29.
  • Kraus VB, Feng S, Wang S, et al. Subchondral bone trabecular integrity predicts and changes concurrently with radiographic and magnetic resonance imaging-determined knee osteoarthritis progression. Arthritis Rheum. 2013;65(7):1812–1821.
  • Madry H, Luyten FP, Facchini A. Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2012;30(3):407–422.
  • Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2010;7(1):23–32.
  • Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development. Nat Rev Rheumatol. 2012;8(2):77–89.
  • Van Der Kraan PM. Osteoarthritis year 2012 in review: biology. Osteoarthr Cartil. 2012;20(12):1447–1450.
  • Heijink A, Gomoll AH, Madry H, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):423–435.
  • Felson DT. Osteoarthritis as a disease of mechanics. Osteoarthr Cartil. 2012;21(1):10–15.
  • Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 2004;50(9):2811–2819.
  • Lievense AM, Bierma-Zeinstra SM, Verhagen AP, et al. Influence of hip dysplasia on the development of osteoarthritis of the hip. Ann Rheum Dis. 2004;63(6):621–626.
  • Brandt KD, Lohmander LS, Doherty M. Pathogenesis of osteoarthritis - Introduction: the concept of osteoarthritis as failure of the diarthrodial joint. In: Brandt KD, Lohmander LS, Doherty M, eds. Osteoarthritis. New York (NY): Oxford University Press; 1998. p. 70–74.
  • Krasnokutsky S, Belitskaya-Levy I, Bencardino J, et al. Quantitative MRI evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum. 2011;63(10):2983–2991. doi:10.1002/art.30471
  • Orlowsky EW, Kraus VB. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol. 2015;42(3):363–371.
  • Madry H, Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J Gene Med. 2013;15(10):343–355.
  • Madry H, Trippel SB. Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 2000;7(4):286–291.
  • Elsler S, Schetting S, Schmitt G, et al. Effective, safe nonviral gene transfer to preserve the chondrogenic differentiation potential of human mesenchymal stem cells. J Gene Med. 2012;14(7):501–511.
  • Madry H, Cucchiarini M. Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat Med J. 2011;52(3):245–261.
  • Baragi VM, Renkiewicz RR, Jordan H, et al. Transplantation of transduced chondrocytes protects articular cartilage from interleukin 1-induced extracellular matrix degradation. J Clin Invest. 1995;96(5):2454–2460.
  • Doherty PJ, Zhang H, Tremblay L, et al. Resurfacing of articular cartilage explants with genetically-modified human chondrocytes in vitro. Osteoarthr Cartil. 1998;6(3):153–159.
  • Nixon AJ, Brower-Toland BD, Bent SJ, et al. Insulinlike growth factor-I gene therapy applications for cartilage repair. Clin Orthop. 2000;43(379 Suppl):S201–13.
  • Ikeda T, Kubo T, Arai Y, et al. Adenovirus mediated gene delivery to the joints of guinea pigs. J Rheumatol. 1998;25(9):1666–1673.
  • Allay JA, Dennis JE, Haynesworth SE, et al. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther. 1997;8(12):1417–1427.
  • Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage. 2011;2(3):201–225.
  • Gouze E, Pawliuk R, Pilapil C, et al. In vivo gene delivery to synovium by lentiviral vectors. Mol Ther. 2002;5(4):397–404.
  • Meyerrose TE, Roberts M, Ohlemiller KK, et al. Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells. 2008;26(7):1713–1722.
  • Arai Y, Kubo T, Fushiki S, et al. Gene delivery to human chondrocytes by an adeno associated virus vector. J Rheumatol. 2000;27(4):979–982.
  • Madry H, Cucchiarini M, Terwilliger EF, et al. Efficient and persistent gene transfer into articular cartilage using recombinant adeno-associated virus vectors in vitro and in vivo. Human Gene Ther. 2003;14(4):393–402.
  • Stender S, Murphy M, O’Brien T, et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater. 2007;13:93–99. discussion 9.
  • Cucchiarini M, Ekici M, Schetting S, et al. Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Tissue Eng Part A. 2011;17(15–16):1921–1933.
  • Venkatesan JK, Ekici M, Madry H, et al. SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther. 2012;3(3):22.
  • Goater J, Muller R, Kollias G, et al. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J Rheumatol. 2000;27(4):983–989.
  • Duan C. Nutritional and developmental regulation of insulin-like growth factors in fish. J Nutr. 1998;128(2 Suppl):306S–14S.
  • Rey-Rico A, Frisch J, Venkatesan JK, et al. Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Ther. 2014;22(1):50–57. doi:10.1038/gt.2014.90
  • Frisch J, Rey-Rico A, Venkatesan JK, et al. Chondrogenic differentiation processes in human bone marrow aspirates upon rAAV-mediated gene transfer and overexpression of the insulin-like growth factor I. Tissue Eng Part A. 2015;21(17–18):2460–2471.
  • Santangelo KS, Bertone AL. Effective reduction of the interleukin-1beta transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis. Osteoarthr Cartil. 2011;19(12):1449–1457.
  • Watson RS, Broome TA, Levings PP, et al. scAAV-mediated gene transfer of interleukin-1-receptor antagonist to synovium and articular cartilage in large mammalian joints. Gene Ther. 2013;20(6):670–677. doi:10.1038/gt.2012.81
  • Goodrich LR, Phillips JN, McIlwraith CW, et al. Optimization of scAAVIL-1ra in vitro and in vivo to deliver high levels of therapeutic protein for treatment of osteoarthritis. Mol Ther Nucleic Acids. 2013;2:e70.
  • Calcedo R, Wilson JM. Humoral immune response to AAV. Front Immunol. 2013;4:341.
  • Rey-Rico A, Venkatesan JK, Frisch J, et al. Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency. Acta Biomater. 2015;18:118–127.
  • Rey-Rico A, Venkatesan JK, Frisch J, et al. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater. 2015;27:42–52.
  • Cucchiarini M, Madry H, Ma C, et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther. 2005;12(2):229–238.
  • Cucchiarini M, Terwilliger EF, Kohn D, et al. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer. J Cell Mol Med. 2009;13(8B):2476–2488.
  • Kaul G, Cucchiarini M, Arntzen D, et al. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med. 2006;8(1):100–111.
  • Cucchiarini M, Sohier J, Mitosch K, et al. Effect of transforming growth factor-beta 1 (TGF-ß1) released from a scaffold on chondrogenesis in an osteochondral defect model in the rabbit. Centr Eur J Biol. 2004;4(1):1–18.
  • Schmal H, Mehlhorn AT, Zwingmann J, et al. Stimulation of chondrocytes in vitro by gene transfer with plasmids coding for epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF). Cytotherapy. 2005;7(3):292–300.
  • Goodrich LR, Hidaka C, Robbins PD, et al. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br. 2007;89(5):672–685.
  • Weimer A, Madry H, Venkatesan JK, et al. Benefits of rAAV-mediated IGF-I overexpression for the long-term reconstruction of human osteoarthritic cartilage bymodulation of the IGF-I axis. Mol Med. 2012;18(1):346–358.
  • Piera-Velazquez S, Jimenez SA, Stokes D. Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis Rheum. 2002;46(3):683–693.
  • Shi S, Mercer S, Eckert GJ, et al. Growth factor transgenes interactively regulate articular chondrocytes. J Cell Biochem. 2012;114(4):908–919.
  • Surendran S, Kim SH, Jee BK, et al. Anti-apoptotic Bcl-2 gene transfection of human articular chondrocytes protects against nitric oxide-induced apoptosis. J Bone Joint Surg Br. 2006;88(12):1660–1665.
  • Grossin L, Cournil-Henrionnet C, Pinzano A, et al. Gene transfer with HSP70 in rat chondrocytes confers cytoprotection in vitro and during experimental osteoarthritis. Faseb J. 2006;20(1):65–75.
  • Dai J, Rabie AB. Recombinant adeno-associated virus vector hybrids efficiently target different skeletal cells. Front Biosci. 2007;12:4280–4287.
  • Lianxu C, Hongti J, Changlong Y. NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthr Cartil. 2006;14(4):367–376.
  • Amos N, Lauder S, Evans A, et al. Adenoviral gene transfer into osteoarthritis synovial cells using the endogenous inhibitor IkappaBalpha reveals that most, but not all, inflammatory and destructive mediators are NFkappaB dependent. Rheumatology (Oxford). 2006;45(10):1201–1209.
  • Chan TF, Couchourel D, Abed E, et al. Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts. J Bone Miner Res. 2011;26(7):1399–1410.
  • Oh H, Chun CH, Chun JS. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 2012;64(8):2568–2578.
  • Rhee J, Ryu JH, Kim JH, et al. alpha-Catenin inhibits beta-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity and collagen type II expression in articular chondrocytes through formation of Gli3R.alpha-catenin.beta-catenin ternary complex. J Biol Chem. 2012;287(15):11751–11760.
  • Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthr Cartil. 1998;6(5):374–376.
  • Brower-Toland BD, Saxer RA, Goodrich LR, et al. Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function. Hum Gene Ther. 2001;12(2):117–129.
  • Chen B, Qin J, Wang H, et al. Effects of adenovirus-mediated bFGF, IL-1Ra and IGF-1 gene transfer on human osteoarthritic chondrocytes and osteoarthritis in rabbits. Exp Mol Med. 2010;42(10):684–695.
  • Cucchiarini M, Schetting S, Terwilliger EF, et al. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Ther. 2009;16(11):1363–1372.
  • Haupt JL, Frisbie DD, McIlwraith CW, et al. Dual transduction of insulin-like growth factor-I and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model. J Orthop Res. 2005;23(1):118–126.
  • Lee DK, Choi KB, Oh IS, et al. Continuous transforming growth factor beta1 secretion by cell-mediated gene therapy maintains chondrocyte redifferentiation. Tissue Eng. 2005;11(1–2):310–318.
  • Madry H, Emkey G, Zurakowski D, et al. Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation. J Gene Med. 2004;6(2):238–245.
  • Madry H, Reszka R, Bohlender J, et al. Efficacy of cationic-liposome mediated gene transfer to mesangial cells in vitro and in vivo. J Mol Med. 2001;79(4):184–189.
  • Nixon AJ, Haupt JL, Frisbie DD, et al. Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy. Gene Ther. 2005;12(2):177–186.
  • Saxer RA, Bent SJ, Brower-Toland BD, et al. Gene mediated insulin-like growth factor-I delivery to the synovium. J Orthop Res. 2001;19(5):759–767.
  • Shuler FD, Georgescu HI, Niyibizi C, et al. Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta1 gene into articular chondrocytes. J Orthop Res. 2000;18(4):585–592.
  • Smith P, Shuler FD, Georgescu HI, et al. Genetic enhancement of matrix synthesis by articular chondrocytes. J Rheumatol. 2000;43(5):1156–1164.
  • Tsuchiya H, Kitoh H, Sugiura F, et al. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2003;301(2):338–343.
  • Ikeda T, Kamekura S, Mabuchi A, et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 2004;50(11):3561–3573.
  • Li Y, Tew SR, Russell AM, et al. Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng. 2004;10(3–4):575–584.
  • Tew SR, Li Y, Pothacharoen P, et al. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthr Cartil. 2005;13(1):80–89.
  • Ulrich-Vinther M, Stengaard C, Schwarz EM, et al. Adeno-associated vector mediated gene transfer of transforming growth factor-beta1 to normal and osteoarthritic human chondrocytes stimulates cartilage anabolism. Eur Cell Mater. 2005;10:40–59.
  • Cucchiarini M, Thurn T, Weimer A, et al. Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum. 2007;56(1):158–167.
  • Cao X, Deng W, Wei Y, et al. Incorporating pTGF-beta1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation. Eur Cell Mater. 2012;23:81–93.
  • Gavenis K, Schneider U, Wallich R, et al. Effects of low concentrated BMP-7 administered by co-cultivation or plasmid transfection on human osteoarthritic chondrocytes. Int J Artif Organs. 2010;33(6):339–347.
  • Kubo S, Cooper GM, Matsumoto T, et al. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 2009;60(1):155–165.
  • Mi Z, Ghivizzani SC, Lechman ER, et al. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum. 2000;43(11):2563–2570.
  • Neumann AJ, Alini M, Archer CW, et al. Chondrogenesis of human bone marrow-derived mesenchymal stem cells is modulated by complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2. Tissue Eng Part A. 2013;19(11–12):1285–1294. doi:10.1089/ten.TEA.2012.0411
  • Ng VY, Jump SS, Santangelo KS, et al. Genetic engineering of juvenile human chondrocytes improves scaffold-free mosaic neocartilage grafts. Clin Orthop Relat Res. 2012;471(1):26–38.
  • Palmer GD, Steinert A, Pascher A, et al. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther. 2005;12(2):219–228.
  • Shi S, Mercer S, Eckert GJ, et al. Regulation of articular chondrocyte aggrecan and collagen gene expression by multiple growth factor gene transfer. J Orthop Res. 2011;30(7):1026–1031.
  • Shi S, Mercer S, Eckert GJ, et al. Growth factor regulation of growth factor production by multiple gene transfer to chondrocytes. Growth Factors. 2013;31(1):32–38.
  • Steinert AF, Palmer GD, Pilapil C, et al. Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng Part A. 2009;15(5):1127–1139.
  • Steinert AF, Proffen B, Kunz M, et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res Ther. 2009;11(5):R148.
  • Steinert AF, Weissenberger M, Kunz M, et al. Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells. Arthritis Res Ther. 2012;14(4):R168.
  • Wang D, Taboas JM, Tuan RS. PTHrP overexpression partially inhibits a mechanical strain-induced arthritic phenotype in chondrocytes. Osteoarthr Cartil. 2010;19(2):213–221.
  • Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials. 2012;33(7):2016–2024.
  • Zhang F, Su K, Fang Y, et al. A mixed co-culture of mesenchymal stem cells and transgenic chondrocytes in alginate hydrogel for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(1):77–84. doi:10.1002/term.1641
  • Zhang F, Yao Y, Su K, et al. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system. J Tissue Eng Regen Med. 2015;9(9):1036–1045. doi:10.1002/term.1656
  • Zhang F, Yao Y, Zhou R, et al. Optimal construction and delivery of dual-functioning lentiviral vectors for type I collagen-suppressed chondrogenesis in synovium-derived mesenchymal stem cells. Pharm Res. 2010;28(6):1338–1348.
  • Kafienah W, Al-Fayez F, Hollander AP, et al. Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach. Arthritis Rheum. 2003;48(3):709–718.
  • Coughlan TC, Crawford A, Goldring MB, et al. Lentiviral shRNA knock-down of ADAMTS-5 and -9 restores matrix deposition in 3D chondrocyte culture. J Tissue Eng Regen Med. 2010;4(8):611–618.
  • Wang ZH, Yang ZQ, He XJ, et al. Lentivirus-mediated knockdown of aggrecanase-1 and -2 promotes chondrocyte-engineered cartilage formation in vitro. Biotechnol Bioeng. 2010;107(4):730–736.
  • Zhang HG, Xie J, Yang P, et al. Adeno-associated virus production of soluble tumor necrosis factor receptor neutralizes tumor necrosis factor alpha and reduces arthritis. Hum Gene Ther. 2000;11(17):2431–2442.
  • Roessler BJ, Hartman JW, Vallance DK, et al. Inhibition of interleukin-1-induced effects in synoviocytes transduced with the human IL-1 receptor antagonist cDNA using an adenoviral vector. Hum Gene Ther. 1995;6(3):307–316.

•• Milestone study on cartilage gene therapy in vivo.

  • Gouze JN, Gouze E, Palmer GD, et al. A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Res Ther. 2003;5(5):R301–9.
  • Zhang X, Yu C, Xushi ZC, et al. Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo. Biochem Biophys Res Commun. 2006;341(1):202–208.
  • Attur MG, Dave MN, Leung MY, et al. Functional genomic analysis of type II IL-1beta decoy receptor: potential for gene therapy in human arthritis and inflammation. J Immunol. 2002;168(4):2001–2010.
  • Bandara G, Mueller GM, Galea-Lauri J, et al. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc Natl Acad Sci U S A. 1993;90(22):10764–10768.

•• Pioneering study on cartilage gene therapy in vivo.

  • Frisbie DD, Ghivizzani SC, Robbins PD, et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther. 2002;9(1):12–20.
  • Nixon AJ, Goodrich LR, Scimeca MS, et al. Gene therapy in musculoskeletal repair. Ann N Y Acad Sci. 2007;1117:310–327.
  • Pelletier JP, Caron JP, Evans C, et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum. 1997;40(6):1012–1019.

•• Milestone study on cartilage gene therapy in vivo.

  • Wang HJ, Yu CL, Kishi H, et al. Suppression of experimental osteoarthritis by adenovirus-mediated double gene transfer. Chin Med J (Engl). 2006;119(16):1365–1373.
  • Kim SH, Kim S, Evans CH, et al. Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J Immunol. 2001;166(5):3499–3505.
  • Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials. 2011;33(7):2016–2024.
  • Orth P, Kaul G, Cucchiarini M, et al. Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2119–2130.
  • Jeon SY, Park JS, Yang HN, et al. Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs. Biomaterials. 2012;33(17):4413–4423.
  • Cook JL, Kuroki K, Visco D, et al. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog. Osteoarthr Cartil. 2010;18(Suppl 3):S66–79.
  • Gerwin N, Bendele AM, Glasson S, et al. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat. Osteoarthr Cartil. 2010;18(Suppl 3):S24–34.
  • Glasson SS, Chambers MG, Van Den Berg WB, et al. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil. 2010;18(Suppl 3):S17–23.
  • Kraus VB, Huebner JL, DeGroot J, et al. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig. Osteoarthr Cartil. 2010;18(Suppl 3):S35–52.
  • Laverty S, Girard CA, Williams JM, et al. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rabbit. Osteoarthr Cartil. 2010;18(Suppl 3):S53–65.
  • Little CB, Zaki S. What constitutes an “animal model of osteoarthritis” – the need for consensus?. Osteoarthr Cartil. 2012;20(4):261–267.

• Review on animal models to evaluate osteoarthritis.

  • Poole R, Blake S, Buschmann M, et al. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthr Cartil. 2010;18(Suppl 3):S10–16.

• Review on animal models to evaluate osteoarthritis.

  • Pap T, Muller-Ladner U, Gay R, et al. Gene therapy in rheumatoid arthritis: how to target joint destruction?. Arthritis Res. 1999;1(1):5–9.
  • Goodrich LR, Brower-Toland BD, Warnick L, et al. Direct adenovirus-mediated IGF-I gene transduction of synovium induces persisting synovial fluid IGF-I ligand elevations. Gene Ther. 2006;13(17):1253–1262.
  • Fernandes J, Tardif G, Martel-Pelletier J, et al. In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am J Pathol. 1999;154(4):1159–1169.

•• Milestone study on cartilage gene therapy in vivo.

  • Frisbie DD, McIlwraith CW. Evaluation of gene therapy as a treatment for equine traumatic arthritis and osteoarthritis. Clin Orthop. 2000;379 Suppl:S273–87.
  • Santangelo KS, Nuovo GJ, Bertone AL. In vivo reduction or blockade of interleukin-1beta in primary osteoarthritis influences expression of mediators implicated in pathogenesis. Osteoarthr Cartil. 2012;20(12):1610–1618.
  • Pi Y, Zhang X, Shao Z, et al. Intra-articular delivery of anti-Hif-2alpha siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther. 2015;22(6):439–448. doi:10.1038/gt.2015.16
  • Chen LX, Lin L, Wang HJ, et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-kappaBp65-specific siRNA. Osteoarthr Cartil. 2008;16(2):174–184.
  • Shen PC, Shiau AL, Jou IM, et al. Inhibition of cartilage damage by pro-opiomelanocortin prohormone overexpression in a rat model of osteoarthritis. Exp Biol Med (Maywood). 2011;236(3):334–340.
  • Yamashita M, Yamauchi K, Suzuki M, et al. Transfection of rat cells with proopiomeranocortin gene, precursor of endogenous endorphin, using radial shock waves suppresses inflammatory pain. Spine. 2009;34(21):2270–2277. Phila Pa 1976.
  • Blaney Davidson EN, Vitters EL, Van Den Berg WB, et al. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther. 2006;8(3):R65.
  • Scharstuhl A, Vitters EL, Van Der Kraan PM, et al. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 2003;48(12):3442–3451.
  • Hsieh JL, Shen PC, Shiau AL, et al. Adenovirus-mediated kallistatin gene transfer ameliorates disease progression in a rat model of osteoarthritis induced by anterior cruciate ligament transection. Hum Gene Ther. 2009;20(2):147–158.
  • Hsieh JL, Shen PC, Shiau AL, et al. Intraarticular gene transfer of thrombospondin-1 suppresses the disease progression of experimental osteoarthritis. J Orthop Res. 2010;28(10):1300–1306.
  • Zhang X, Mao Z, Yu C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2004;22(4):742–750.
  • Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978;15(4):1313–1321.

• Early demonstration of the key phenotype switch in chondrocytes.

  • Von Der Mark K, Gauss V, Von Der Mark H, et al. Relationship between cell shape and type of collagen synthesis as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267:531–532.

• Early demonstration of the key phenotype switch in chondrocytes

  • Yoo JU, Mandell I, Angele P, et al. Chondrogenitor cells and gene therapy. Clin Orthop. 2000;379 Suppl:S164–70.
  • Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–584.
  • Matsumoto T, Cooper GM, Gharaibeh B, et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 2009;60(5):1390–1405.
  • Evans CH, Scully SP. Orthopaedic gene therapy. Clin Orthop. 2000;379 Suppl:S2.
  • Evans CH, Robbins PD, Ghivizzani SC, et al. Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis. Hum Gene Ther. 1996;7(10):1261–1280.

•• Initial clinical trial for cartilage gene therapy.

  • Wehling P, Reinecke J, Baltzer AW, et al. Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis. Hum Gene Ther. 2009;20(2):97–101.
  • Ha CW, Noh MJ, Choi KB, et al. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy. 2012;14(2):247–256.

•• Milestone clinical trial for osteoarthritis gene therapy.

  • Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.
  • Van Beuningen HM, Van Der Kraan PM, Arntz OJ, et al. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest. 1994;71(2):279–290.
  • Yonekura A, Osaki M, Hirota Y, et al. Transforming growth factor-beta stimulates articular chondrocyte cell growth through p44/42 MAP kinase (ERK) activation. Endocr J. 1999;46(4):545–553.
  • Glansbeek HL, Van Beuningen HM, Vitters EL, et al. Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest. 1998;78(2):133–142.
  • Noh MJ, Copeland RO, Yi Y, et al. Pre-clinical studies of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 (TG-C). Cytotherapy. 2010;12(3):384–393.
  • Ha CW, Cho JJ, Elmallah RK, et al. A multicenter, single-blind, phase IIa clinical trial to evaluate the efficacy and safety of a cell-mediated gene therapy in degenerative knee arthritis patients. Hum Gene Ther Clin Dev. 2015;26(2):125–130. doi:10.1089/humc.2014.145

•• Milestone clinical trial for osteoarthritis gene therapy.

  • Lee MC, Ha CW, Elmallah RK, et al. A placebo-controlled randomised trial to assess the effect of TGF-ss1-expressing chondrocytes in patients with arthritis of the knee. Bone Joint J. 2015;97-B(7):924–932.

•• Milestone clinical trial for osteoarthritis gene therapy.

  • Van Der Kraan PM, Van Den Berg WB. Osteophytes: relevance and biology. Osteoarthr Cartil. 2007;15(3):237–244.
  • Hunziker EB, Driesang IM, Morris EA. Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop. 2001;391 Suppl:S171–S181.
  • Mierisch CM, Cohen SB, Jordan LC, et al. Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy. 2002;18(8):892–900.
  • Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy and its tortuous path into the clinic. Transl Res. 2013;161(4):205–216. doi:10.1016/j.trsl.2013.01.002
  • Goodrich LR, Grieger JC, Phillips JN, et al. scAAVIL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther. 2015;22(7):536–545. doi:10.1038/gt.2015.21

• Milestone study on osteoarthritis gene therapy in vivo.

  • Lohmander LS, Hellot S, Dreher D, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2014;66(7):1820–1831.

• Important clinical trial for knee osteoarthritis applying a recombinant growth factor.

• Review on recent clinical trials of gene therapy

  • High KA, Aubourg P. rAAV human trial experience. Methods Mol Biol. 2011;807:429–457.
  • Xiao PJ, Lentz TB, Samulski RJ. Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Ther Deliv. 2012;3(7):835–856.
  • Yla-Herttuala S. Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol Ther. 2012;20(10):1831–1832.
  • Buning H. Gene therapy enters the pharma market: the short story of a long journey. EMBO Mol Med. 2013;5(1):1–3.

• Review on the first rAAV-based gene therapy drug.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.