72
Views
18
CrossRef citations to date
0
Altmetric
Review

Human cancer gene therapy with cytokine gene-modified cells

, , &
Pages 1595-1607 | Published online: 23 Feb 2005

Bibliography

  • JANE WAY CA JR: How the immune system works to protect the host from infection: a personal view. Proc. Nati Acad. Sci. USA (2001) 98:7461–7468.
  • DIEFENBACH A, RAULET D: The mate immune response to tumors and its role in the induction of T-cell immunity. Immunol. Rev (2002) 188:9–21.
  • KARRE K: NK cells, MHC class I molecules and the missing self. Scand. I Immunol. (2002) 55:221–228.
  • ALBERT ML, PEARCE SF,FRANCISCO LM et al: Immature dendritic cells phagocytose apoptotic cells via avI35 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. (1998) 188:1359–1368.
  • BASU S, BINDER RJ, RAMALIGNAM T, SRI VASTAVA PK: CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70 and calreticulin. Immunity (2001) 14:303–313.
  • GALLUCCI S, LOLKEMA M, MATZINGER P: Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. (1999) 11:1249–1255.
  • GALLUCCI S, MATZINGER P: Danger signals: SOS to the immune system. Carr. Opin. Immunol. (2001) 13:114–119.
  • BANCHEREAU J, BRIERE F, CAUX C,DAVOUST J et al.: Immunobiology of dendritic cells. Anna. Rev Immunol. (2000) 18:767–811.
  • BANCHEREAU J, STEINMAN RM: cellsand the control of immunity. Nature (1998) 6673:245–252.
  • SMYTH MJ, CROWE NY, HAYAKAWA Y, TAKEDA K, YAGITA H, GODFREY DI: NKT cells - conductors of tumor immunity? Curr. Opin. Immunol. (2002) 14:165–171.
  • BRETSCHER P, COHN M: A theory ofself-nonself discrimination. Science (1970) 169:1042–1049.
  • KIRKWOOD JM,STRAWDERMAN MH, ERNSTOFF MS et al.: Interferon alfa-26 adjuvant therapy of high risk resected cutaneous melanoma: ECOG trial EST 1684." Clin. Omni (1996) 14:7–17.
  • KIRKWOOD JM, IBRAHIM JG, SONDAK VK et al.: High and low dose interferon alpha-2b in high risk melanoma. First analysis of intergroup trial E1690/ 5911C9190. Clin. Oncol. (2000) 18:2444–2458.
  • KIRKWOOD JM, IBRAHIM JG, SOSMAN JA et al.: High dose Interferon alfa 2b significantly prolongs relapse free survival compared with GM2-KLH/QS-21 vaccine in patients with resected stage IIB-IImelanoma: results of intergroup trial E1694/ 59512/C509081.1 Clin. Oncol. (2001) 19:2370–2380.
  • CASCINELLI N, BELLI F, MACKKIE RMet al.: Effect of long term adjuvant therapy with interferon alpha 2a in patients with regional node metastases from cutaneous melanoma. A randomized trial. Lancet (2001) 358:866–869.
  • CAMERON DA, CORNBLEET MC, MACKIE RIVI et al: Adjuvant interferon alpha 2b in high risk melanoma - the Scottish Study. Br. J. Cancer (2001) 84:1146–1149.
  • GROB JJ, DRENO B, CHASTANG C et al.: Randomised trial of interferon a2a as adjuvant therapy in resected primary melanoma thicker than 1.5 mm without clinically detectable node metastases. Lancet (1998) 351:1905–1910.
  • KEFFORD RF: Adjuvant therapy of cutaneous melanoma: the interferon debate. Ann. Oncol. (2003) 14:358–365.
  • FISHER RI, ROSENBERG SA, FYFE G: Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancerj Sci. Am. (2000) 6\(Suppl. 1):555–557.
  • ROSENBERG SA, LOTZE MT, YANG JC et al.: Prospective randomized trial of high-dose interleukin-2 alone or in conjunctionwith lymphokine-activated killer cells for the treatment of patients with advanced cancer. Nati Cancer Inst. (1993) 85:622–632.
  • ASSIER E, JULLIEN V, LEFORT J et al: NK cells and polymorphonuclear neutrophils are both critical for IL-2-induced pulmonary vascular leak syndrome. Immunol (2004) 172:7661–7668.
  • FURTADO GC,CUROTTO DE LAFAILLE MA, KUTCHUKHIDZE N, LAFAILLE JJ: Interleukin 2 signaling is required for CD4(+) regulatory T cell function. Exp. Med. (2002) 196:851–857.
  • SPITLER LE, GROSSBARD ML, ERNSTOFF MS et al: Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor.j Clin. Omni (2000) 18:1614–1621.
  • RINI BI, WEINBERG V, BOK R, SMALL EJ: Prostate-specific antigen kinetics as a measure of the biological effect of granulocyte-macrophage colony-stimulating factor in patients with serologic progression of prostate cancer. " Clin. Oncol. (2003) 21:99–105.
  • ANDERSON PM, MARKOVIC SN, SLOAN JA et al.: Aerosol granulocyte-macrophage colony-stimulating factor: a low toxicity, lung-specific biological therapy in patients with lung metastases. Clin. Cancer Res. (1999) 5:2316–2323.
  • COHEN J: IL-12 deaths: explanation and a puzzle. Science (1995) 270:908.
  • LEONARD JP, SHERMAN ML,FISHER GL et al.: Effects of single-dose interleukin-qw exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood (199 7) 90:2541-2548.
  • SELBY P, HOBBS S, VINER C et al.: Tumour necrosis factor in man: clinical and biological observations. Br. J Cancer (1987) 56:803–808.
  • FEINBERG B, KURZROCK R, TALPAZ M, BLICK M, SAKS S, GUTTERMAN JU: A Phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. Clin. Omni (1988) 6:1328–1334.
  • LIENARD D, EWALENKO P, DELMOTTE JJ, RENARD N,LEJEUNE FJ: High-dose recombinant tumor necrosis factor a in combination with interferon y and melphalan in isolationperfusion of the limbs for melanoma andsarcoma.j Clin. Omni (1992) 10:52–60.
  • DRANOFF G, JAFFE E, LAZENBY A et al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA (1993) 90:3539–3543.
  • MACH N, GILLESSEN S, WILSON SB, SHEEHAN C, MIHM M, DRANOFF G: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or F1t3-ligand. Cancer Res. (2000) 60:3239–3246.
  • ROSENBERG SA, AEBERSOLD P, CORNETTA K et al.: Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumour-infiltrating lymphocytes modified by retroviral gene transduction. N Engl. J. Med. (1990) 323:570–578.
  • ROTHER RP, SQUINTO SP,MASON JM, ROLINS SA: Protection of retroviral vector particles in human blood through complement inhibition. Hum. Gene Ther. (1995) 6:429–435.
  • CHRIST M, LUSKY M, STOECKEL F et al.: Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response. Immunol. Lett. (1997) 57:19–25.
  • GORZIGLIA M, KADAN MJ, YEI S et al: Elimination of both El and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy. Virol. (1996) 70:4173–4178.
  • MORSY MA, GUM, MOTZEL S et al: An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc. Nati Acad. Sci. USA (1998) 95:7866–7871.
  • TRONO D: Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene The]: (2000) 7:20–23.
  • YANG S, DELGADO R, KING SR et al: Generation of retroviral vector for clinical studies using transient transfection. Hum. Gene Ther. (1999) 10:123–132.
  • WYSOCKI PJ, KOWALCZYK DW, IZYCKI D, GRABARCZYK P, KWIAS Z, MACKIEWICZ A: IL-6 and GM-CSF in tumor rejection model of renal cell cancer. Adv. Exp. Med. Biol. (2000) 495:393–397.
  • REILLY R, MACHIELS J-P, EMENS L et al.: The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res. (2001) 61:880–883.
  • KAWANO T, CUI J, KOEZUKA Y et al.: Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Valphal4 NKT cells. Science (1997) 278: 1626-1629.
  • GILLESSEN S, NAUMOV YN, NIEUWENHUIS EE et al: CD1d-restricted T cells regulate dendritic cell function and antitumor immunity in a granulocyte-macrophage colony-stimulating factor-dependent fashion. Proc. Nati Acad. ScL USA (2003) 100:8874–8879.
  • DONG Z, YONEDA J, KUMAR R, FIDLER IJ: Angiostatin-mediated suppression of cancer metastases by primary neoplasms engineered to produce granulocyte/macrophage colony-stimulating factor. Exp. Med. (1998) 188:755–763.
  • SOIFFER R, LYNCH T, MIHM M et al: Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. ScL USA (1998) 95:13141–13146.
  • SOIFFER R, HODI SF, HALUSKA F et al.: Vaccination with irradiated, autologus melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol. (2003) 21:3343–3350.
  • NEMUNAITIS J, STERMAN D, JABLONS D et al.: Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. Nati Cancer Inst. (2004) 96:326–331.
  • SALGIA R, LYNCH T, SKARIN A et al: Vaccination with irradiated autologus tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma." Clin. Omni (2003) 2 1 : 6 2 4–6 3 0 .
  • JAFFEE EM, HRUBAN RH,BIEDRZYCKI B et al.: Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine forpancreatic cancer: a Phase I trial of safetyand immune activation. Clin. Oncol (2001) 19:145–156.
  • NELSON WG, SIMONS JW, MIKHAK B et al.: Cancer cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother. Pharmacol (2000) 46:S67–S72.
  • SIMONS JW, JAFFEE EM, WEBER CE et al.: Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. (1997) 57:1537–1546.
  • SIMONS JW, MIKHAK B, CHANG JF et al.: Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. (1999) 59:5160–5168.
  • BUBENIK J, VOITENOK NN, KIELERJ et al.: Local administration of cells containing an inserted IL-2 gene and producing IL-2 inhibits growth of human tumors in nu/nu mice. Immunol Lett. (1988) 19:279–282.
  • BUBENIK J, ZEUTHEN J, BUBENIKOVA D, SIMOVA J, JANDLOVA T: Gene therapy of cancer: use of IL-2 gene transfer and kinetics of local T and NK cell subsets. Anticancer Res. (1993) 13:1457–1460.
  • RUSSELL SJ, ECCLES SA,FLEMMING CL, JOHNSON CA, COLLINS MK: Decreased tumorigenicity of a transplantable rat sarcoma following transfer and expression of an IL-2 cDNA. Int. J. Cancer (1991) 47:244–251.
  • VAN ELSAS A, AARNOUDSE C, MINNE CE et al.: Transfection of IL-2 augments CTL response to human melanoma cells M vitro: immunological characterization of a melanoma vaccine. .1. Immunother. (1997) 20:343–353.
  • IWANUMA Y, KATO K, YAGITA H, OKUMURA K: Induction of tumor-specific cytotoxic T lymphocytes and natural killer cells by tumor cells transfected with the interleukin-2 gene. Cancer Immunol Immunother. (1995) 40:17–23.
  • GANSBACHER B, ZIER K, DANIELS B,CRONIN K, BANNERJI R, GILBOA E: Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and inducesprotective immunity. I. Exp. Med. (1990) 172:1217–1224.
  • FEARON ER, PARDOLL DM, ITAYA T et al: Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell (1990) 60:397–403.
  • TRUDEL S, LIZ, DODGSON C et al: Adenovector engineered interleukin-2 expressin autologus plasma cell vaccination after high-dose chemotherapy for multiple myeloma - a Phase I study. Leukemia (2001) 15:846–854.
  • HAIGHT AE, BOWMAN LC, NG CY, VANIN EF, DAVIDOFF AM: Humoral response to vaccination with interleukin-2-expressing allogeneic neuroblastoma cells after primary therapy. Med. Pediatr. Oncol (2000) 35:712–715.
  • SOBOL RE, FAKHRAI H, SHAWLER D et al: Interleukin-2 gene therapy in a patient with glioblastoma. Gene Tiler. (1995) 2:164–167.
  • PALMER K, MOORE J, EVERARD M et al: Gene therapy with autologus, interleukin-2-secreting tumor cells in patients with malignant melanoma. Hum. Gene The]: (1999) 10:1261–1268.
  • SCHREIBER S, KAMPGEN E, WAGNER E et al: Immunotherapy of metastatic malignant melanoma by a vaccine consisting of autologous interleukin 2-transfected cancer cells: outcome of a Phase I study. Hum. Gene Ther. (1999) 10:983–993.
  • OSANTO S, SCHIPHORST PP, WEIJL NI et al.: Vaccination of melanoma patients with an allogeneic, genetically modified interleukin 2-producing melanoma cell line. Hum. Gene Ther. (2000) 11:739–750.
  • LAW TM, MOTZER RJ,MAZUMDAR M et al.: Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer (1995) 76:824–832.
  • HAWKINS MJ, ATKINS MB, DUTCHER JP et al.: A Phase II clinical trial of interleukin-2 and lymphokine-activated killer cells in advanced colorectal carcinoma. Immunother. (1994) 15:74–78.
  • SCHMIDT-WOLF IG, FINKE S, TROJANECK B et al.: Phase I clinical study applying autologus immunologicaleffector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. ELI: Cancer (1999) 81:1009–1016.
  • JANTSCHEFF P, HERRMANN R, SPAGNOLI G et al.: Gene therapy with cytokine-transfected xenogeneic cells (Vero-IL-2) in patients with metastatic solid tumors: mechanism(s) of elimination of the transgene-carrying cells. Cancer Immunol Immunother. (1999) 48:321–330.
  • TARTOUR E, MEHTALI M,SASTRE-GARAU X et al.: Phase I clinical trial with IL-2-transfected xenogeneic cells administered in subcutaneous metastatic tumours: clinical and immunological findings. Br. I Cancer (2000) 83:1454–1461.
  • GANSBACHER B, BANNERJI R, DANIELS B, ZIER K, CRONIN K, GILBOA E: Retroviral vector mediated gamma interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. (1990) 50:7820–7825.
  • DAR M, ABDEL-WAHAB Z,VERVAERT C, DARROW T, BARBER J, SEIGLER HF: Transduction with the murine interferon gamma gene leads to long-term immunological memory. Ann. Surg. Oncol (1996) 3:247–254.
  • BARON S, COPPENHAVER DH, DIANZANI F et al.: Introduction to the interferon system. In: Interferon: Principles and Medical Applications. Baron S, Coppenhaver DH, Dianzani F (Eds), Galveston, University of Texas, TX, USA (1992):1–15.
  • OGASARAWA M, ROSENBERG S: Enhanced expression of HLA molecules and stimulation of autologous human tumor infiltrating lymphocytes following transduction of melanoma cells with gamma IFN genes. Cancer Res. (1993) 53:3561–3568.
  • ABDEL-WAHAB Z, OSANTO S, DARROW TL et al.: Transduction of human melanoma cells with the gamma interferon gene enhances cellular immunity. Cancer Gene Ther. (1994) 1:171–179.
  • QIN Z, BLANKENSTEIN T: CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFNy receptor expression by nonhematopoietic cells. Immunity (2000) 12:677–686.
  • VALENTE G, OZMEN L, NOVELLI F et al.: Distribution of interferon-gamma receptor in human tissues. Ear. Immunol (1992) 22:2403–2412.
  • SGADARI C, ANGIOLILLO AL, CHERNEY BW et al.: Interferon-inducible protein-10 identified as a mediator of tumor necrosis M vivo. Proc. Natl. Acad. Sci. USA (1996) 93:13791–13796.
  • SGADARI C, FARBER JM, ANGIOLILLO AL et al: Mig, the monokine induced by interferon-gamma promotes tumor necrosis in vivo. Blood (1997) 89:2635–2643.
  • KOWALCZYK DW, WLAZLO AP, GILES-DAVIS W, KAMMER AR, MUKHOPADHYAY S, ERTL HC: Vaccine-induced CD8+ T cells eliminate tumors by a two-staged attack. Cancer Gene Ther. (2003) 10:878–888.
  • ABDEL-WAHAB Z, WELTZ C, HESTER D et al.: A Phase I clinical trial of immunotherapy with interferon-y gene-modified autologous melanoma cells. Cancer (1997) 80:401–412.
  • GOLUMBEK PT, LAZENBY AJ, LEVITSKY HI et al: Treatment of established renal cancer by tumor cells engineered to secrete inteleukin-4. Science (1991) 254:713–716.
  • TEPPER RI, COFFMAN RL, LEDER P: An eosinophil-dependent mechanism for the anti-tumor effect of interleukin-4. Science (1992) 257:548–551.
  • HOCK H, DORSCH M, KUNZENDORF U, QIN Z, DIAMANTSTEIN T,BLANKENSTEIN T: Mechanisms of rejection induced by tumor cell-targeted gene transfer of interleukin-2, inteleukin-4, interleukin-7, tumor necrosis factor, or interferon gamma. Proc. Nati Acad. Sci. USA (1993) 90:2774–2778.
  • PERICLE F, GIOVARELLI M, COLOMBO MP et al.: An efficient Th2-type memory follows CD8+ lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. Immunol (1994) 153:5659–5673.
  • SALLUSTO F, LANZAVECCHIA A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte-macrophage colony-stimulating factor plus interleukin-4 and downregulated by tumor necrosis factor a. .1 Exp. Med. (1994) 179:1109–1118.
  • ARIENTI F, BELLI F, NAPOLITANO F et al.: Vaccination of melanoma patients with interleukin 4 gene-transduced allogeneic melanoma cells. Hum. Gene flier. (1999) 10:2907–2916.
  • BELLI F, MASCHERONI L, GALLINO G et al.: Active immunization of metastatic melanoma patients with IL-2 or IL-4 gene transfected, allogeneic melanoma cells. Adv. Exp. Med. Biol. (1998) 451:543–545.
  • MAIO M, FONSATTI E, LAMAJ E et al.: Vaccination of stage IV patients with allogeneis IL-4 or IL-2-gene transduced melanoma cells generates functional antibodies against vaccinating and autologous melanoma cells. Cancer Immunol Immunother. (2002) 51:9–14.
  • MILLER A, MCBRIDE W, DUBINETT S et al.: Transduction of human melanoma cell lines with human interleukin-7 gene using retroviral-mediated gene transfer: comparison of immunologic properties with interleukin-2. Blood (1993) 18:3686–3694.
  • MURPHY W, BACK T, CONLON K et al.: Antitumor effects of interleukin-7 and adoptive immunotherapy on human colon carcinoma xenografts. I Clin. Invest. (1993) 92:1918–1924.
  • FINKE S, TROJANECK B, MOLLER P et al.: Increase of cytotoxic sensitivity of primary human melanoma cells transfected with the interlukin-7 gene to autologous and allogeneic immunologic effector cells. Cancer Gene Ther. (1997) 4:260–268.
  • CARSANA M, TRAGNI G, NICOLINI Get al.: Comparative assessment of TCRBV diversity in T lymphocytes present in blood, metastatic lesions, and DTH sites of two melanoma patients vaccinated with an IL-7 gene-modified autologous tumor cell vaccine. Cancer Gene Ther: (2002) 9:243–253.
  • WITTIG B, MARTEN A, DORBIC T et al.: Therapeutic vaccination against metastatic carcinoma by expression-modulated and immunomodified autologous tumor cells: a first clinical Phase I/II trial. Hum. Gene Ther: (2001) 12:267–278.
  • RAKHMILEVICH AL, JANSSEN K, TURNER J, CULP J, YANG NS: Cytokine gene therapy of cancer using gene gun technology: superior antitumor activity of IL-12 Hum. Gene Ther. (1997) 8:1303–1311.
  • ZIT VOGEL L, TAHARA H, ROBBINS PD et al.: Cancer immunotherapy of established tumors withIL-12. Effective delivery by genetically engineered fibroblasts. Immunol (1995) 155:1393–1403.
  • RAKHMILEVICH AL, TIMMINS JG, JANSSEN K, POHLMANN EL, SHEEHY MJ, YANG NS: Gene gun-mediated IL-12 gene therapy induces antitumour effects in the absence of toxicity: a direct comparison with systemic IL-12 protein therapy. Immunothec (1999) 22:135–144.
  • LASEK W, BASAK G, SWITAJ T et al.: Complete tumour regression induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother: (2004) 53:363–372.
  • SWITAJ T, JALILI A, JAKUBOWSKA AB et al.: CpG immunostimulatory oligodeoxynucleotide 1826 enhances antitumor effect of interleukin 12 gene-modified tumor vaccine in a melanoma model in mice. Clin. Cancer Res. (2004) 10:4165–4175.
  • NAUME B, GATELY M, ESPEVIK T: A comparative study of IL-12 (cytotoxic lymphocyte maturation factor) IL-2, and IL-7-induced effects on immunomagnetically purifiedCD56+ NK cells.' Immunol (1992) 148:2429–2436.
  • SUN Y, JURGOVSKY K, MOLLER P et al.: Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical Phase I study. Gene Ther. (1998) 5:481–490.
  • KANG WK, PARK C, YOON HL et at Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a Phase I study. Hum. Gene Ther: (2001) 12:671–684.
  • NEMUNAITIS J, BOHART C, FONG T et al.: Phase I trial of retroviral vector-mediated interferon (IFN)-gamma gene transfer into autologous tumor cells in patients with metastatic melanoma. Cancer Gene Ther. (1998) 5:292–300.
  • GILBOA E, LYERLY HK, VIEWEG J, SAITO S: Immunotherapy of cancer using cytokine gene-modified tumor vaccines. Semin. Cancer Biol. (1994) 5:409–417.
  • MACKIEWICZ A, WIZNEROWICZ M, ROEB E et al: Interleukin-6-type cytokines and their receptors for gene therapy of melanoma. Ann. NY Acad. Sci. (1995) 762:361-373; discussion 373–374.
  • MACKIEWICZ A, WIZNEROWICZ M, ROEB E et al.: Soluble interleukin 6 receptor is biologically active in vivo. Cytokine (1995) 7:142–149.
  • FISCHER M, GOLDSCHMITT J, PESCHEL C et al.: A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol (1997) 15:142-145.ma. OZBEK S, PETERS M, BREUHAHN K et al.: The designer cytokine hyper-IL-6 mediates growth inhibition and GM-CSF-dependent rejection of B16 melanoma cells. Oncogene (2001) 20:972–979.
  • MACKIEWICZ A, GORNY A, LACIAK M et al.: Gene therapy of human melanoma. Immunization of patients with autologous tumor cells admixed with allogeneic melanoma cells secreting interleukin 6 and soluble interleukin 6 receptor. Hum. Gene Ther. (1995) 6:805–811.
  • WIZNEROWICZ M, FONG AZ, MACKIEWICZ A, HAWLEY RG: Double-copy bicistronic retroviral vector platform for gene therapy and tissue engineering: application to melanoma vaccine development. Gene Ther. (1997) 4:1061–1068.
  • NAWROCKI S, LACIAK M, IZYCKI D et al: Humoral responses to melanoma vaccine, genetically modified with interleukin 6 and soluble interleukin 6 receptor. Adv. Exp. Med. Biol. (2001) 495:411–418.
  • OCHSENBEIN AF, KLENERMAN P, KARRER U et al.: Immune surveillance against a solid tumor fails because of immunological ignorance. Proc. Nati Acad. Sci. USA (1999) 96:2233–2238.
  • PEREZ-DIEZ A, SPIESS PJ, RESTIFO NP, MATZINGER P, MARINCOLA FM: Intensity of the vaccine-elicited immune response determines tumor clearance. Immunol (2002) 168:338–347.
  • NEMUNAITIS J, BOHART C, FONG T et al.: Phase I trial of retroviral vector-mediated interferon (IFN)-gamma gene transfer into autologous tumor cells in patients with metastatic melanoma. Cancer Gene Ther. (1998) 5:292–300.
  • http://www.wiley.co.uldgenmed/clinical The Journal of Gene Medicine website, clinical trials page.Affiliation

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.