293
Views
51
CrossRef citations to date
0
Altmetric
Review

Oncolytic measles viruses for cancer therapy

&
Pages 1685-1692 | Published online: 23 Feb 2005

Bibliography

  • KIRN D, MARTUZA RL, ZWIEBEL J: Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med. (2001) 7(7):781–787.
  • RUSSELL SJ: RNA viruses as virotherapy agents. Cancer Gene Ther. (2002) 9(12):961–966.
  • GRIFFIN DE: Measles virus. In: Fields Virology Knipe DM, Howley PM (Eds), Lippincott Williams & Wilkins, Philiadelphia, USA (2001):1402–1442.
  • CATHOMEN T, NAIM HY,CATTANEO R: Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. Viral. (1998) 72(2):1224–1234.
  • WILD TF, FAYOLLE J, BEAU VERGER P,BUCKLAND R: Measles virus fusion: roleof the cysteine-rich region of the fusionglycoprotein.Viral. (1994) 68(11):7546–7548.
  • DORIG RE, MARCIL A, CHOPRA A, RICHARDSON CD: The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell (1993) 75(2):295–305.
  • NANICHE D, VARIOR-KRISHNAN G, CERVONI F et al.: Human membrane cofactor protein (CD46) acts as a cellularreceptor for measles virus. J. Virol (1993) 67(10):6025–6032.
  • TATSUO H, ONO N, TANAKA K, YANAGI Y: SLAM (CDw150) is a cellular receptor for measles virus. Nature (2000) 406(6798):893–897.
  • HSU EC, IORIO C, SARANGI F, KHINE AA, RICHARDSON CD: CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology (2001) 279(1):9–21.
  • MINAGAWA H, TANAKA K, ONO N, TATSUO H, YANAGI Y: Induction of the measles virus receptor SLAM (CD150) on monocytes. J. Gen. Virol (2001) 82(Pt 12):2913–2917.
  • OLDSTONE MB: Measles virus. In: Viruses, Plagues and History Oldstone MB (Ed.), Oxford Press, New York, USA (1998).
  • CUTTS FT, MARKOWITZ LE: Successes and failures in measles control.' Infect. Dis. (1994) 170\(Suppl. 1):532–541.
  • BLUMING AZ, ZIEGLER JL: Regression of Burkitt's lymphoma in association with measles infection. Lancet (1971) 2(7715):105–106.
  • PENG KW, AHMANN GJ, PHAM L et al.: Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood (2001) 98(7):2002–2007.
  • PENG KW, TENEYCK CJ, GALANIS E et al.: Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. (2002) 62(16):4656–4662.
  • GROTE D, RUSSELL SJ, CORNU TI et al.: Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood (2001) 97(12):3746–3754.
  • PHUONG LK, ALLEN C, PENG KW et al.: Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. (2003) 63(10):2462–2469.
  • YANAGI Y: The cellular receptor for measles virus-elusive no more. Rev Med. Virol (2001) 11(3):149–156.
  • SCHNEIDER U, VON MESSLING V, DEVAUX P, CATTANEO R: Efficiency of measles virus entry and dissemination through different receptors. J. Vim/. (2002) 76(15):7460–7467.
  • HSU EC, SARANGI F, IORIO C et al:A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmosetB cells. J. Virol (1998) 72(4):2905–2916.
  • JURIANZ K, ZIEGLER S, GARCIA-SCHULER H et al: Complement resistance of tumor cells: basal and induced mechanisms. Ma Immunol (1999) 36(13-14):929–939.
  • SANTIAGO C, BJORLING E,STEHLE T, CASASNOVAS JM: Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J. Biol. Chem. (2002) 277(35):32294–32301.
  • ANDERSON BD, NAKAMURA T, RUSSELL SJ, PENG KW: High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. (2004) 64(14):4919–4926.
  • KATZE MG, HE Y, GALE M JR: Virusesand interferon: a fight for supremacy. Nat. Rev Immunol (2002) 2(9):675–687.
  • STOJDL DF, LICHTY BD,TENOEVER BR et al: VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell (2003) 4(4):263–275.
  • BALACHANDRAN S, BARBER GN: Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life (2000) 50(2):135–138.
  • STRONG JE, COFFEY MC, TANG D, SABININ P, LEE PW: The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO (1998) 17(12):3351–3362.
  • NORMAN KL, LEE PW: Reovirus as a novel oncolytic agent. J. Clin. Invest. (2000) 105(8):1035–1038.
  • FARASSATI F, YANG AD, LEE PW: Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat. Cell Biol. (2001) 3(8):745–750.
  • VARGHESE S, RABKIN SD: Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. (2002) 9(12):967–978.
  • DINGLI D, PENG KW, HARVEY ME et al.: Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidalsodium iodide symporter. Blood (2004) 103(5):1641–1646.
  • SPITZWEG C, ZHANG S, BERGERT ER et al.: Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res. (1999) 59(9):2136–2141.
  • CHO JY, SHEN DH, YANG W et al.: In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther. (2002) 9(17):1139–1145.
  • SIMPKIN DJ, MACKIE TR: EGS4 Monte Carlo determination of the beta dose kernel in water. Med. Phys. (1990) 17(2):179–186.
  • BRAMSON JL, HITT M, ADDISON CL et al.: Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12. Hum. Gene Ther. (1996) 7(16):1995–2002.
  • ANDREANSKY S, HE B, VAN COTT J et al.: Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther. (1998) 5(1):121–130.
  • D'ANGELICA M, KARPOFF H, HALTERMAN M et al.: In vivo interleukin-2 gene therapy of established tumors with herpes simplex amplicon vectors. Cancer Immunol Immunother. (1999) 47(5):265–271.
  • KUTUBUDDIN M, FEDEROFF HJ, CHALLITA-EID PM et al: Eradication of pre-established lymphoma using herpes simplex virus amplicon vectors. Blood (1999) 93(2):643–654.
  • TRUDEL S, TRACHTENBERG J, TOI A et al.: A Phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Then (2003) 10(10):755–763.
  • WONG RJ, PATEL SG, KIM S et al: Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum. Gene Ther. (2001) 12(3):253–265.
  • GROTE D, CATTANEO R,FIELDING AK: Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Res. (2003) 63(19):6463–6468.
  • PENG KW, FACTEAU S, WEGMAN T, O'KANE D, RUSSELL SJ: Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat. Med. (2002) 8(5):527–531.
  • AUWAERTER PG, ROTA PA,ELKINS WR et al.: Measles virus infection in rhesus macaques: altered immune responses and comparison of the virulence of six different virus strains. Infect. Dis. (1999) 180(4):950–958.
  • HSU EC, DORIG RE, SARANGI F et al:Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding. Vim] (1997) 71(8):6144–6154.
  • KEMPER C, LEUNG M,STEPHENSEN CB et al: Membrane cofactor protein (MCP; CD46) expression in transgenic mice. Clin. Exp. Immunol (2001) 124(2):180–189.
  • MANCHESTER M, PALL GF: Model systems: transgenic mouse models for measles pathogenesis. Trends Microbiol (2001) 9(1):19–23.
  • OLDSTONE MB, LEWICKI H, THOMAS D et al.: Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell (1999) 98(5):629–640.
  • HAHM B, ARBOUR N, NANICHE D et al.: Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. Vim] (2003) 77(6):3505–3515.
  • MRKIC B, PAVLOVIC J, RULICKE T et al: Measles virus spread and pathogenesis in genetically modified mice. J. Vim] (1998) 72(9):7420–7427.
  • MRKIC B, ODERMATT B, KLEIN MA et al: Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice.Vim]l (2000) 74(3):1364–1372.
  • ROSCIC-MRKIC B,SCHWENDENER RA, ODERMATT B et al: Roles of macrophages in measles virusinfection of genetically modified mice. .1. Vim] (2001) 75(7):3343–3351.
  • PENG KW, FRENZKE M, MYERS R et al.: Biodistribution of oncolytic measles virus after intraperitoneal administration into IfnarTm-CD46Ge transgenic mice. Hum. Gene Ther. (2003) 14(16):1565–1577.
  • SCHNEIDER-SCHAULIES S, BIEBACK K, AVOTA E, KLAGGE I, TER MEULEN V: Regulation of gene expression in lymphocytes and antigen-presenting cells by measles virus: consequences for immunomodulation.Ma Med. (2002) 80(2):73–85.
  • MCQUAID S, COSBY SL: An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab. Invest. (2002) 82(4):403–409.
  • KLAGGE IM, TER MEULEN V, SCHNEIDER-SCHAULIES S: Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur. Immunol (2000) 30(10):2741–2750.
  • SCHNEIDER U, BULLOUGH F, VONGPUNSAWAD S, RUSSELL SJ, CATTANEO R: Recombinant measles viruses efficiently entering cells through targeted receptors. Vim] (2000) 74(21):9928–9936.
  • HAMMOND AL, PLEMPER RK, ZHANG J et al.: Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen.' Vim] (2001) 75(5):2087–2096.
  • PENG KW, DONOVAN KA,SCHNEIDER U et al.: Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood (2003) 101(7):2557–2562.
  • BUCHEIT AD, KUMAR S, GROTE DM et al.: An oncolytic measles virus engineered to enter cells through the CD20 antigen. Ther. (2003) 7(1):62–72.
  • PENG KW, HOLLER P, ORR B, KRANZ DM, RUSSELL SJ: Targeting virus entry and membrane fusion through specific peptide/MHC complexes using a high-affinity T-cell receptor. Gene Tiler. (2004) 11(15):1234–1239.
  • LECOUTURIER V, FAYOLLE J, CABALLERO M et al.: Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Vim] (1996) 70(7):4200–4204.
  • PATTERSON JB, SCHEIFLINGER F, MANCHESTER M, YILMA T, OLDSTONE MB: Structural and functional studies of the measles virus hemagglutinin: identification of a novel site required for CD46 interaction. Virology (1999) 256(1):142–151.
  • MASSE N, BARRETT T, MULLER CP, WILD TF, BUCKLAND R: Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): potential consequences for wild-type MV infection. Vim] (2002) 76(24):13034–13038.
  • VONGPUNSAWAD S, OEZGUN N, BRAUN W, CATTANEO R: Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. [ Vim]l (2004) 78(1):302–313.
  • NAKAMURA T, PENG KW, VONGPUNSAWAD S et al.: Antibody-targeted cell fusion. Nat. Biotechnol (2004) 22(3):331–336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.