49
Views
7
CrossRef citations to date
0
Altmetric
Review

Cell therapies for type 1 diabetes mellitus

&
Pages 269-277 | Published online: 03 Mar 2005

Bibliography

  • GROUP TDCACTR: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl. J. Med. (1993) 329:977–986.
  • DEWITT DE, HIRSCH TB: Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA (2003) 289:2254–2264.
  • WANG F, CARABINO JM, VERGARA CM: Insulin glargine: a systematic review of a long-acting insulin analogue. Clin. flier. (2003) 25:1541-1577, discussion 1539–1540.
  • HELLER S: Insulin lispro: a useful advance in insulin therapy. Expert Opin. Phannacother. (2003) 4:1407–1416.
  • HOMKO C, DELUZIO A, JIMENEZ C, KOLACZYNSKI JW, BODEN G: Comparison of insulin aspart and lispro: pharmacokinetic and metabolic effects. Diabetes Care (2003) 26:2027–2031.
  • BODE BW, STEED RD, DAVIDSON PC: Reduction in severe hypoglycemia with long-term continuous subcutaneous insulin infusion in type I diabetes. Diabetes Care (1996) 19:324–327.
  • RENARD E: Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Carr: Opin. Phannacol. (2002) 2:708–716.
  • JAREMKO J, RORSTAD O: Advances toward the implantable artificial pancreas for treatment of diabetes. Diabetes Care (1998) 21:444–450.
  • FIORETTO P, STEFFES MW, SUTHERLAND DE, GOETZ FC, MAUER M: Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl. J. Med. (1998) 339:69–75.
  • GRUESSNER AC, SUTHERLAND DE: Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of October 2002. Clin. Transpl. (2002) 41–77.
  • PANARO F, TESTA G, BOGETTI D et al.: Auto-islet transplantation after pancreatectomy. Expert Opin. Biol. Then (2003) 3:207–214.
  • ROBERTSON RP: Seminars in medicine of the Beth Israel Hospital, Boston: pancreatic and islet transplantation for diabetes-cures or curiosities? N Engl. J. Med. (1992) 327:1861–1868.
  • SHAPIRO AM, LAKEY JR, RYAN EA et al.: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl. I Med. (2000) 343:230–238.
  • ••Landmark report of humanislet transplantation using the 'Edmonton protocol'.
  • RYAN EA, LAKEY JR, RAJOTTE RV et al.: Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes (2001) 50:710–719.
  • RYAN EA, LAKEY JR, PATY BW et al.: Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes (2002) 51:2148–2157.
  • KANDEEL F, SMITH CV, TODOROV I, MULLEN Y: Advances in islet cell biology: from stem cell differentiation to clinical transplantation: conference report. Pancreas (2003) 27:E63–78.
  • HIRSHBERG B, ROTHER KI, DIGON BJ 3RD et al: Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience. Diabetes Care (2003) 26:3288–3295.
  • BRUNETTI P, BASTA G, FALOERNI A et al.: Immunoprotection of pancreatic islet grafts within artificial microcapsules. Int. Aral Organs (1991) 14:789–791.
  • LANZA RP, KUHTREIBER WM, ECKER DM, MARSH JP, CHICK WL: Successful bovine islet xenografts in rodents and dogs using injectable microreactors. Transplant. Proc. (1995) 27:3211.
  • LANZA RP, JACKSON R, SULLIVAN A et al.: Xenotransplantation of cells using biodegradable microcapsules. Transplantation (1999) 67:1105–1111.
  • PHELPS CJ, KOIKE C, VAUGHT TD et al.: Production of alpha 1,3-galactosyltransferase-deficient pigs. Science (2003) 299:411–414.
  • RAYAT GR, RAJOTTE RV, ELLIOTT JF,KORBUTT GS: Expression of Gal alpha(1,3)gal on neonatal porcine islet beta-cells and susceptibility to human antibody/ complement lysis. Diabetes (1998) 47:1406–1411.
  • MCKENZIE IF, KOULMANDA M, MANDEL TE, SANDRIN MS: Pig islet xenografts are susceptible to 'anti-pig' but not Gal alpha(1,3)Gal antibody plus complement in Gal o/o mice. brununol. (1998) 161:5116–5119.
  • GROTH CG, TIBELL A, WENNBERG L et al.: Clinical aspects and perspectives in islet xenotransplantation. Hepatobiliary Pancreat. Stow. (2000) 7:364–369.
  • HENEINE W, TIBELL A, SWITZER WM et al.: No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet (1998) 352:695–699.
  • PARADIS K, LANGFORD G, LONG Z et al.: Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science (1999) 285:1236–1241.
  • CLEMENCEAU B, JEGOU D, MARTIGNAT L, SAI P: Long-term follow-up failed to detect in vitro transmission of full-length porcine endogenous retroviruses from specific pathogen-free pig islets to human cells. Diabetologia (2001) 44:2044–2055.
  • CLEMENCEAU B, JEGOU D, MARTIGNAT L, SAI P: Microchimerism and transmission of porcine endogenous retrovirus from a pig cell line or specific pathogen-free pig islets to mouse tissues and human cells during xenografts in nude mice. Diabetologia (2002) 45:914–923.
  • VAN DER LAAN LJ, LOCKEY C, GRIFFETH BC et al.: Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature (2000) 407:90–94.
  • MUELLER NJ, BARTH RN, YAMAMOTO S et al: Activation of cytomegalovirus in pig-to-primate organ xenotransplantation. Virol. (2002) 76:4734–4740.
  • GOLTZ M, ERICSSON T, PATIENCE C et al.: Sequence analysis of the genome of porcine lymphotropic herpesvirus 1 and gene expression during posttransplant lymphoproliferative disease of pigs. Virology (2002) 294:383–393.
  • FLEISCHER N, CHEN C, SURANA M et al.: Functional analysis of a conditionally transformed pancreatic beta-cell line. Diabetes (1998) 47:1419–1425.
  • HAYEK A, BEATTIE GM, CIRULLI V et al.: Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes (1995) 44:1458–1460.
  • BEATTIE GM, CIRULLI V, LOPEZ AD, HAYEK A: Ex vivo expansion of human pancreatic endocrine cells. J. Clin. Endocrinol. Metab. (1997) 82:1852–1856.
  • BEATTIE GM, RUBIN JS, MALLY MI, OTONKOSKI T, HAYEK A: Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes (1996) 45:1223–1228.
  • BEATTIE GM, MONTGOMERY AM, LOPEZ AD et al.: A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes (2002) 51:3435–3439.
  • GARCIA-OCANA A, VASAVADA RC, TAKANE KK et al.: Using beta-cell growth factors to enhance human pancreatic islet transplantation. I. Clin. Endocrinol. Metab. (2001) 86:984–988.
  • NIELSEN JH, GALSGAARD ED, MOLDRUP A et al: Regulation of beta-cell mass by hormones and growth factors. Diabetes (2001) 50\(Suppl. 1):525–529.
  • MITANCHEZ D, CHEN R, MASSIAS JF et al.: Regulated expression of mature human insulin in the liver of transgenic mice. FEBS Lett. (1998) 421:285–289.
  • THULE PM, LIU JM: Regulated hepatic insulin gene therapy of STZ-diabetic rats. Gene Tiler. (2000) 7:1744–1752.
  • BOCHAN MR, SIDNER RA, SHAH R et al.: Stable transduction of human pancreatic adenocarcinoma cells, rat fibroblasts, and bone marrow-derived stem cells with recombinant adeno-associated virus containing the rat preproinsulin II gene. Transplant. Proc. (1998) 30:453–454.
  • BARTLETT RJ, DENTS M, SECORE SL, ALEJANDRO R, RICORDI C: Toward engineering skeletal muscle to release peptide hormone from the human pre-proinsulin gene. Transplant. Proc. (1998) 30:451.
  • SIMONSON GD, GROSKREUTZ DJ, GORMAN CM, MACDONALD MJ: Synthesis and processing of genetically modified human proinsulin by rat myoblast primary cultures. Hum. Gene Tiler: (1996) 7:71–78.
  • FERBER S, HALKIN A, COHEN H et al:Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia [see comments]. Nat. Med. (2000) 6:568–572.
  • YOSHIDA S, KAJIMOTO Y, YASUDA T et al.: PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes (2002) 51:2505–2513.
  • CHEUNG AT, DAYANANDAN B, LEWIS JT et al.: Glucose-dependent insulin release from genetically engineered K cells. Science (2000) 290:1959–1962.
  • JIMENEZ-CHILLARON JC, TELEMAQUE-POTTS S, GOMEZ-VALADES AG et al.: Glucolkinase gene transfer to skeletal muscle of diabetic Zucker fatty rats improves insulin-sensitive glucose uptake. Metabolism (2002) 51:121–126.
  • NAGAMATSU S, NAKAMICHI Y, OHARA-IMAIZUMI M et al.: Adenovirus-mediated preproinsulin gene transfer into adipose tissues ameliorates hyperglycemia in obese diabetic KKA(y) mice. FEBS Lett. (2001) 509:106–110.
  • O'DOHERTY RM, LEHMAN DL, TELEMAQUE-POTTS S, NEWGARD CB: Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes (1999) 48:2022–2027.
  • WU C, OKAR DA, NEWGARD CB, LANGE AJ: Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. Clin. Invest. (2001) 107:91–98.
  • WU C, OKAR DA, NEWGARD CB, LANGE AJ: Increasing fructose 2,6-bisphosphate overcomes hepatic insulin resistance of type 2 diabetes. Am. Physiol Endocrinol Metab. (2002) 282:E38–45.
  • PITTENGER ME MACKAY AM, BECK SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science (1999) 284:143–147.
  • JIANG Y, JAHAGIRDAR BN, REINHARDT RL et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature (2002) 418:41–49.
  • KODAMA S, KUHTREIBER W, FUJIMURA S, DALE EA, FAUSTMAN DL: Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science (2003) 302:1223–1227.
  • FERNANDES A, KING LC, GUZ Y et al.: Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology (1997) 138:1750–1762.
  • BONNER-WEIR S, BAXTER LA, SCHUPPIN GT, SMITH FE: A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes (1993) 42:1715–1720.
  • RAMIYA VK, MARAIST M, ARFORS KE et al.: Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. (2000) 6:278–282.
  • ••Islets produced from cultured mousepancreatic ductal epithelia.
  • BONNER-WEIR S, TANEJA M, WEIR GC et al.: In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA (2000) 97:7999–8004.
  • ••Cultivation of human islet-likestructures from pancreatic ductal tissue that is normally discarded following islet isolation.
  • GAO R, USTINOV J, PULKKINEN MAet al.: Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes (2003) 52:2007–2015.
  • HEREMANS Y, VAN DE CASTEELE M, TNT VELD P et al: Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. Cell Biol. (2002) 159:303–312.
  • GU G, DUBAUSKAITE J, MELTON DA:Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development (2002) 129:2447–2457.
  • •One definition of an islet progenitor.
  • GUZ Y, NASIR I, TEITELMAN G: Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology (2001) 142:4956–4968.
  • SCHWITZGEBEL VM, SCHEEL DW, CONNERS JR et al.: Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development (2000) 127:3533–3542.
  • IANUS A, HOLZ GG, THEISE ND, HUSSAIN MA: In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. Cl/n. Invest. (2003) 111:843–850.
  • ALVAREZ-DOLADO M, PARDAL R, GARCIA-VERDUGO JM et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature (2003) 425:968–973.
  • •Evidence against transdifferentiation of bone marrow-derived cells.
  • HESS D, LI L, MARTIN M et al: Bone marrow-derived stem cells initiate pancreatic regeneration. Nat. Biotechnol (2003) 21:763–770.
  • LAMMERT E, CLEAVER O, MELTON D: Induction of pancreatic differentiation by signals from blood vessels. Science (2001) 294:564–567.
  • ••A clear description of the interplay betweenislets and blood vessels during development.
  • EVANS MJ, KAUFMAN MH: Establishment in culture of pluripotential cells from mouse embryos. Nature (1981) 292:154–156.
  • MARTIN GR: Isolation of a pluripotent cellline from early mouse embryos cultured in media conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA (1981) 78:7634–7638.
  • MATSUI Y, TOKSOZ D, NISHIKAWA S et al.: Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature (1991) 353:750–752.
  • RESNICK JL, BIXLER LS, CHENG L, DONOVAN PJ: Long-term proliferation of mouse primordial germ cells in culture. Nature (1992) 359:550–551.
  • STEWART C, GADI I, BHATT H: Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. (1994) 161:626–628.
  • LABOSKY P, BARLOW D, HOGAN B: Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (IGF2r) gene compared with embryonic stem (ES) cell lines. Development (1994) 120:3197–3204.
  • WILES MV, KELLER G: Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development (1991) 111:259–267.
  • KELLER G, KENNEDY M, PAPAYANNOPOULOU T, WILES MV: Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell. Biol. (1993) 13:473–486.
  • KLUG M, SOONPAA M, FIELD L: DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes. km' Physiol (1995) 269:H1913–H1921.
  • ROHWEDEL J, SEHLMEYER U, SHAN J, MEISTER A, WOBUS A: Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell. Biol. Int. (1996) 20:579–587.
  • BAIN G, KITCHENS D, YAO M, HUETTNER JE, GOTTLIEB DI: Embryonic stem cells express neuronal properties in vitro. Dev. Biol. (1995) 168:342–357.
  • ROHWEDEL J, MALTSEV V, BOBER Eet al: Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol. (1994) 164:87–101.
  • DANI C, SMITH AG, DESSOLIN S et al:Differentiation of embryonic stem cells into adipocytes in vitro. j Cell Sci. (1997) 110:1279–1285.
  • DOETSCHMAN TC, EISTETTER H, KATZ M, SCHMIDT W, KEMLER R: The M vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. I Embryo]. Exp. Morph. (1985) 87:27–45.
  • ABE K, NIWA H, IWASE K et al.: Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp. Cell Res. (1996) 229:27–34.
  • THOMSON JA, ITSKOVITZ-ELDOR J,SHAPIRO SS et al: Embryonic stem cell lines derived from human blastocysts. Science (1998) 282:1145–1147.
  • •First description of human ES cell derivation.
  • REUBINOFF BE, PERA ME FONG CY, TROUNSON A, BONGSO A: Embryonic stem cell lines from human blastocysts: somatic differentiation M vitro. Nat. Biotechnol (2000) 18:399–404.
  • SHAMBLOTT MJ, AXELMAN J, WANG S et al.: Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA (1998) 95:13726–13731.
  • •First description of human EG cell derivation.
  • SOLTER D, GEARHART J: Putting stem cells to work. Science (1999) 283:1468–1470.
  • SHAMBLOTT M, EDWARDS B, GEARHART J: Pluripotent stem cells. In: Principles of Tissue Engineering (Second Edition), Lanza RP, Vacanti JP, Langer R (Eds), Academic Press, New York (2000):369–381.
  • KAHAN BW, JACOBSON LM, HULLETT DA et al.: Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes (2003) 52:2016–2024.
  • ••Pancreatic endocrine hormone-producingcells resulting from the differentiation of mouse ES cells.
  • KLUG MG, SOONPAA MH, KOH GY, FIELD LJ: Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. Cl/n. Invest. (1996) 98:216–224.
  • LI M, PEVNY L, LOVELL-BADGE R, SMITH A: Generation of purified neural precursors from embryonic stem cells by lineage selection. Carr. Biol. (1998) 8:971–974.
  • SORIA B, ROCHE E, BERNA G et al.: Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes (2000) 49:157–162.
  • ••Mouse ES cells genetically selected forinsulin production.
  • LUMELSKY N, BLONDEL O, LAENG P et al: Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science (2001) 292:1389–1394.
  • ••Mouse ES cells differentiated into islet-likestructures in serum-free media. This work is controversial due to potential antibody staining artefacts (see [931).
  • RAJAGOPAL J, ANDERSON WJ, KUME S, MARTINEZ OI, MELTON DA: Insulin staining of ES cell progeny from insulin uptake. Science (2003) 299:363.
  • ••Insulin protein uptake from cellsunder some culture conditions, induding a commonly used serum-free media formulation.
  • HORT Y, RULIFSON IC, TSAI BC et al.:Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl. Acad. Sci. USA (2002) 99:16105–16110.
  • •Mouse ES cells differentiated in serum-free media into islet-like structures.
  • BLYSZCZUK P, CZYZ J, KANIA G et al: Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl. Acad. Sci. USA (2003) 100:998–1003.
  • SCHULDINER M, YANUKA O, ITSKOVITZ-ELDOR J, MELTON D, BENVENISTY N: Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA (2000) 97:11307–11312.
  • ASSADY S, MAOR G, AMIT M et al: Insulin production by human embryonic stem cells. Diabetes (2001) 50:1691–1697.
  • •Observation of insulin production from differentiated human ES cells. Results may be due in part to uptake of insulin from growth media (see [931).
  • SHAMBLOTT M, AXELMAN J, LITTLEFIELD J et al: Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively M vitro. Proc. Natl. Acad. Sci. USA (2001) 98:113–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.