52
Views
21
CrossRef citations to date
0
Altmetric
Review

Cancer immunotherapy and heat-shock proteins: promises and challenges

, , , , , & show all
Pages 363-373 | Published online: 03 Mar 2005

Bibliography

  • SRIVASTAVA PK, DELEO AB, OLD LJ: Tumour rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl. Acad. Sd. USA (1986) 83(10):3407–8411.
  • TAMURA Y, PENG P, LIU K, DAOU M, SRI VASTAVA PK: Immunotherapy of tumours with autologous tumour-derived heat shock protein preparations. Science (1997) 278(5335):117–120.
  • ••This is the original paper reportingpioneering work of P Srivastava on application of gp96 for irnmunotherapy of cancer.
  • MANJILI MH, WANG XY, PARK J, FACCIPONTE JG, REPASKY EA, SUBJECK JR: Immunotherapy of cancer using heat shock proteins. Front. Biosci. (2002) 7:d43–d52.
  • HOOS A, LEVEY DL: Vaccination with heat shock protein-peptide complexes: from basic science to clinical applications. Expert Rev Vaccines (2003) 2(3):369–379.
  • •An extensive review on clinical application of HSP vaccines.
  • LINDQUIST S: The heat shock response. Ann. Rev. Biochem. (1986) 55:1151–1191.
  • JOLLY C, MORIMOTO RI: Role of the heat shock response and molecular chaperones in oncogenesis and cell death. Natl. Cancer Inst. (2000) 92(19):1564–1572.
  • GLEIMER M, PARHAM P: Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity (2003) 19(4):469–477.
  • FULLER KJ, ISSELS RD, SLOSMAN DO, GUILLET JG, SOUSSI T, POLLA BS: Cancer and the heat shock response. Eur. Cancer (1994) 30A(12):1884–1891.
  • WONG HR, WISPE JR: The stress response and the lung. Am. J. Physiol (1997) 273(1 Pt 1): L1–L9.
  • CIOCCA DR, VARGAS-ROIG LM: Hsp27 as a prognostic and predictive factor in cancer. Prog. MM. Subcell Biol. (2002) 28:205–218.
  • SANTAROSA M, FAVARO D, QUAIA M, GALLIGIONI E: Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur. Cancer (1997) 33(6):873–877.
  • SOLIT DB, SCHER HI, ROSEN N: Hsp90 as a therapeutic target in prostate cancer. Semin. Oncol (2003) 30(5):709–716.
  • MORIMOTO RI: Heat shock: the role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cells (1991) 3(8):295–301.
  • KNOWLTON AA, GUPTA S: HSP60, Box, and cardiac apoptosis. Cardiovasc. Toxicol (2003) 3(3):263–268.
  • GARRIDO C, SCHMITT E, CANDE C, VAHSEN N, PARCELLIER A, KROEMER G: H5P27 and HSP70: Potentially oncogenic apoptosis inhibitors. Cell Cycle (2003) 2(6):579–84.
  • NECKERS L, IVY SP: Heat shock protein 90. Cirri: Opin. Oncol (2003) 15(6):419–424.
  • SCHEIBEL T, BUCHNER J: The Hsp90 complex-a super-chaperone machine as a novel drug target. Biochem. Pharmacol (1998) 56(6):675–682.
  • HELMBRECHT K, ZEISE E, RENSING L: Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif (2000) 33(6):341–365.
  • NYLANDSTED J, ROHDE M, BRAND K, BASTHOLM L, ELLING F,
  • •• JAATTELA M: Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bc1-2. Proc. Nati Acad. Sci USA (2000) 97(14):7871–7876.
  • DIEFENBACH A, HSIA JK, HSIUNG MY, RAULET DH: A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumour immunity. Eur. I Immunol (2003) 33(2):381–391.
  • CARAYANNOPOULOS LN, NAIDENKO OV, FREMONT DH, YOKOYAMA WM: Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. Immunol. (2002) 169(8):4079–4083.
  • COLGAN SP, PITMAN RS, NAGAISHI T et al.: Intestinal heat shock protein 110 regulates expression of CD 1 d on intestinal epithelial cells. Clin. Invest. (2003) 112(5):745–754.
  • DRESSEL R, ELSNER L, QUENTIN T, WALTER L, GUNTHER E: Heat shock protein 70 is able to prevent heat shock-induced resistance of target cells to CTL. Immunol. (2000) 164(5):2362–2371.
  • SCHUELLER G, PAOLINI P, FRIEDL J et al.: Heat treatment of hepatocellular carcinoma cells: increased levels of heat shock proteins 70 and 90 correlate with cellular necrosis. Anti-Cancer Res. (2001) 21(1A):295–300.
  • FENG H, ZENG Y, GRANER MW, KATSANIS E: Stressed apoptotic tumour cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood (2002) 100(12):4108–4115.
  • GROH V, BAHRAM S, BAUER S, HERMAN A, BEAUCHAMP M, SPIES T: Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA (1996) 93:12445–12450.
  • GROH V, RHINEHART R, SECRIST H, BAUER S, GRABSTEIN KH, SPIES T: Broad tumour-associated expression and recognition by tumour-derived gamma delta T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA (1999) 96:6879–9884.
  • ZWIRNER NW, DOLE K, STASTNY P: Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes. Hum Immunol (1999) 60(4):323–330.
  • STEPHENS H: MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol (2001) 22:378–385.
  • MENORET A, PATRY Y, BURG C, LE PENDU J: Co-segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas. .1 Immunol (1995) 155(2):740–747.
  • WANG XY, LI Y, MANJILI MH, REPASKY EA, PARDOLL DM, SUBJECK JR: Hsp110 over-expression increases the immunogenicity of the murine CT26 colon tumour. Cancer Immunol. Immunother. (2002) 51(6):311–319.
  • MATZINGER ATZINGERP: Tolerance, danger, and the extended family. Ann. Rev Immunol (1994) 12:991–1045.
  • TODRYK SM, MELCHER AA, DALGLEISH AG, VILE RG: Heat shock proteins refine the danger theory. Immunology (2000) 99:334–337.
  • BASU S, BINDER RJ, SUTO R, ANDERSON KM, SRIVASTAVA PK: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol (2000) 12:1539–1546.
  • ••This study, along with [47] and [49],compares functional properties of different HSPs with regard to endotoxin contamination.
  • THERY C, REGNAULT A, GARIN J et al.: Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. (1999) 147(3):599–610.
  • ARNOLD-SCHILD D, HANAU D, SPEHNER D et al.: Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. Immunol (1999) 162:3757–3760.
  • CASTELLINO F, BOUCHER PE, EICHLELBERG K et al.: Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatability complex class I antigen presentation via two distinct pathways. J. Exp. Med. (2000) 191:1957–1964.
  • SINGH-JASUJA H, TOES RE, SPEE P et al.: Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med. (2002) 191:1965–1974.
  • •References [38,89-91]. Explore mechanisms of loading of HSP-associated peptides onto MHC class I molecules.
  • BASU S, BINDER RJ, RAMALINGAM T, SRIVASTAVA PK: CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity (2001) 14:303–313.
  • SRIVASTAVA P: Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Ann. Rev Immunol. (2002) 20:395–425.
  • VABULAS RM, BRAEDEL S, HILF N et al.: The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem. (2002) 277:20847–20853.
  • ASEA A, KRAEFT S-K, KURT-JONES EA et al.: HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. (2000) 6:435–442.
  • ASEA A, REHLI M, KABINGU E et al.: Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4..I. Biol. Chem. (2002) 277:15028–15034.
  • OHASHI K, BURKART V, FLOHE S, KOLB H: Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. Immunol (2000) 164:558–561.
  • KARIN M, LIN A: NF-kappaB at the crossroads of life and death. Nat. Immunol (2002) 3:221–227.
  • BINDER RJ, ANDERSON KM, BASU S, SRIVASTAVA PK: Cutting edge: heat shock protein gp96 induces maturation and migration of CD1 lc+ cells in vivo. fhnmunol. (2000) 165(11):6029–6035.
  • BETHKE K, STAIB F, DISTLER M et al.: Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. Immunol (2002) 169(11):6141–6148.
  • ••See [34].
  • COYNE CP, FENWICK BW: Inhibition of lipopolysaccharide-induced macrophage tumour necrosis factor-a synthesis by polymyxin B sulfate. Am.' Vet. Res. (1993) 54:305–314
  • PANJVVANI NN, POPOVA L, SRIVASTAVA PK: Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. .1 Immunol (2002) 168(6):2997–3003. See [34].
  • BAUSINGER H, LIPSKER D, ZIYLAN U et al.: Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur: Immunol (2002) 32(12):3708–3713.
  • ••References [50-54]. These studies report onthe role of endotoxin contamination in HSP function.
  • SUPAJATURA V, USHIO H, NAKAO A, OKUMURA K, RA C, OGAWA H: Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4.1 Immunol (2001) 167(4):2250–2256.
  • ••See [50].
  • GAO B, TSAN MF: Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumour necrosis factor alpha release by murine macrophages. Biol. Chem. (2003) 278(1):174–179.
  • ••See [50].
  • GAO B, TSAN MF: Recombinant human heat shock protein 60 does not induce the release of tumour necrosis factor alpha from murine macrophages. Biol. Chem. (2003) 278(25) :22523–22529.
  • ••See [50].
  • REED RC, BERWIN B, BAKER JP, NICCHITTA CV: GRP94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-kappa B activation and nitric oxide production. I Biol. Chem. (2003) 278(34):31853–31860.
  • ••See [50].
  • ULLRICH SJ, ROBINSON EA, LAW LW, WILLINGHAM M, APPELLA EA: A mouse tumour-specific transplantation antigen is a heat-shock related protein. Proc. Nati Acad. Sd. USA (1986) 83(10):3121–3125.
  • UDONO H, SRIVASTAVA PK: Comparison of tumour-specific immunogenicities of stress-induced proteins gp96, hsp90 and hsp70. I Immunol (1994) 152(11):5398–5403.
  • TAMURA Y, PENG P, LIU K, DAOU M, SRIVASTAVA PK: Immunotherapy of tumour with autologous tumour-derived heat shock protein preparations. Science (1997) 278(5335):117–120.
  • BASU S, SRIVASTAVA PK: Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumour- and peptide-specific immunity. I Exp. Med. (1999) 189(5):797–802.
  • HEIKE M, WEINMANN A, BETHKE K,GALLE PR: Stress protein/peptide complexes derived from autologous tumour tissue as tumour vaccines. Biochem. Pharmacol (1999) 58(9):1381–1387.
  • WANG XY, KAZIM L, REPASKY EA, SUBJECK JR: Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. I Immunol (2001) 166(1)490–497.
  • WANG XY, KAZIM L, REPASKY EA, SUBJECK JR: Immunization with tumour-derived ER chaperone grp170 elicits tumour-specific CD8+ T-cell responses and reduces pulmonary metastatic disease. hail Cancer (2003) 105(2):226–231.
  • •Introducing new approach for immunotherapy of cancers using recombinant HSP-antigen complexes.
  • SRIVASTAVA PK, MENORET A, BASU S, BINDER RJ, MCQUADE KL: Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. [Review] Immunity(1998) 8:657–665.
  • RIVOLTINI L, MAIO M, ANDREOLA G et al.: Vaccination of metastatic melanoma patients with autologous tumour-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. I Chu. Oncol (2002) 20(20):4169–4180.
  • COHEN L, DE MOOR C, PARKER PA, AMATO RJ: Quality of life in patients with metastatic renal cell carcinoma participating in a Phase I trial of an autologous tumour-derived vaccine. Urol. amyl (2002) 7(3):119–124.
  • MAZZAFERRO V, COPPA J, CARRABBA MG et al.: Vaccination with autologous tumour-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Chu. Cancer Res. (2003) 9(9):3235–3245.
  • GRANER MW, ZENG Y, FENG H, KATSANIS E: Tumour-derived chaperone-rich cell lysates are effective therapeutic vaccines against a variety of cancers. Cancer Immunol. Immunother. (2003) 52(4):226–234.
  • MANJILI MH, WANG X-Y, CHEN X et al.: HSP110-HER-2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumours in HER-2/neu transgenic mice. .1 Immunol (2003) 171:4054–4061.
  • •Introducing new approach for immunotherapy of cancers using recombinant HSP-antigen complexes.
  • WANG XY, CHEN X, MANJILI MH, REPASKY E, HENDERSON R, SUBJECK JR: Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer Res. (2003) 63(10):2553–2560.
  • BRELOER M, MARTI T, FLEISCHER B, VON BONIN A: Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur: I Immunol (1998) 28(3):1016–1021.
  • ••References [69-73]. These studies identifyHSP-associated peptides.
  • ISHII T, UDONO H, YAMANO T et al: Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. I Immunol (1999) 162(3):1303–1309.
  • ••See [69].
  • SPONAAS AM, ZUEGEL U, WEBER S et al.: Immunization with gp96 from Listeria monocytogenes-infected mice is due to N-formylated listerial peptides. .1 Immunol (2001) 167(11):6480–6486.
  • ••See [69].
  • MENG SD, GAO T, GAO GF, TIEN P: HBV-specific peptide associated with heat-shock protein gp96. Lancet (2001) 357(9255):528–529.
  • ••See [69].
  • NIELAND TJ, TAN MC, MONNE-VAN MUIJEN M, KONING F, KRUISBEEK AM, VAN BLEEK GM: Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc. Natl. Acad. Sci. USA (1996) 93(12):6135–6139.
  • ••See [69].
  • BAKER-LEPAIN JC, SARZOTTI M, FIELDS TA, LI CY, NICCHITTA CV: GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumour suppression. I Exp. Med. (2002) 196(11):1447–1459.
  • ••An original paper arguing the antigen-specificity of HSP preparations.
  • CASEY DG, LYSAGHT J, JAMES T, BATEMAN A, MELCHER AA, TODRYK SM: Heat shock protein derived from a non-autologous tumour can be used as an anti-tumour vaccine. Immunology (2003) 110(1):105–111.
  • ZHENG H, DAI J, STOILOVA D, LI Z: Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumour immunity. J. Immunol (2001) 167(12):6731–6735.
  • KUPPNER MC, GASTPAR R, GELWER S et al.: The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur.j Immunol (2001) 31(5):1602–1609.
  • DELNESTE Y, MAGISTRELLI G, GAUCHAT J et al.: Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity (2002) 17:353–362.
  • BERWIN B, HART JP, PIZZO SV, NICCHITTA CV: Cutting edge: CD91- independent cross-presentation of GRP94(gp96)-associated peptides. Immunol. (2002) 168(9):4282–4286. ao.BERWIN B, HART JP, RICE S et al.: Scavenger receptor-A mediates gp96/ GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J. (2003) 22(22):6127–6136.
  • LIU T, ZHOU X, ABDEL-MOTAL UM, LJUNGGREN HG, JONDAL M: MHC class I presentation of live and heat-inactivated Sendai virus antigen in T2Kb cells depends on an intracellular compartment with endosomal characteristics. Scand. Immunol (1997) 45:527–533.
  • SCHIRMBECK R, REIMANN J: Alternative processing of endogenous or exogenous antigens extends the immunogenic, H-2 class I-restricted peptide repertoire. MM. Immunol (2002) 39:249–259.
  • STOBER D, TROBONJACA Z, REIMANN J, SCHIRMBECK R: Dendritic cells pulsed with exogenous hepatitis B surface antigen particles efficiently present epitopes to MHC class I-restricted cytotoxic T cells. Ear. Immunol. (2002) 32:1099–1108.
  • ARNOLD D, WAHL C, FAATH S, RAMMENSEE HG, SCHILD H: Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J. Exp. Med. (1997) 186:461–466.
  • SCHIRMBECK R, BOHM W, REIMANN J: Stress protein (hsp73)-mediated, TAP-independent processing of endogenous, truncated 5V40 large T antigen for Db-restricted peptide presentation. Ear. Immunol (1997) 27:2016–2023.
  • SCHOENBERGER SP, VAN DER VOORT El, KRIETEMEIJER GM, OFFRINGA R, MELIEF CJ, TOES RE: Cross-priming of CTL responses in vivo does not require antigenic peptides in the endoplasmic reticulum of immunizing cells. J. Immunol (1998) 161:3808–38012.
  • LI Z, SRI VASTAVA PK: Tumour rejectionantigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J. (1993) 12:3143–3151.
  • LAMMERT E, ARNOLD D, NIJENHUIS M et al.: The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP Ear. J. Immunol (1997) 27:923–927.
  • SPEE P, NEEFJES J: TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Ear. Immunol (1997) 27:2441–2449.
  • •See [38].
  • GROMME M, UYTDEHAAG FG, JANSSEN H et al.: Recycling MHC class I molecules and endosomal peptide loading. Proc. Natl. Acad. Sci. USA (1999) 96:10326–10331.
  • •See [38].
  • BERWIN B, ROSSER ME BRINKER KG, NICCHITTA CV: Transfer of GRP94(Gp96)-associated peptides onto endosomal MHC class I molecules. Traffic (2002) 3(5):358–366.
  • •See [38].
  • GUERMONPREZ P, SAVEANU L, KLEIJMEER M, DAVOUST J, VAN ENDERT P, AMIGORENA S: ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature (2003) 425(6956):397–402.
  • HOUDE M, BERTHOLET S, GAGNON E et al.: Phagosomes are competent organelles for antigen cross-presentation. Nature (2003) 425(6956):402–406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.