1,156
Views
176
CrossRef citations to date
0
Altmetric
Review

Nanobodies as novel agents for cancer therapy

, &
Pages 111-124 | Published online: 20 Apr 2005

Bibliography

  • KOHLER G, MILSTEIN C: Continuouscultures of fitsed cells secreting antibody of predefined specificity. Nature (1975) 256:495–497.
  • BERARD JL: A review of interleukin-2 receptor antagonists in solid organ transplantations. Pharmacotherapy (1999) 19:1127–1137.
  • HENRY ML, RAJAB A: The use of basiliximab in solid organ transplantation. Expert Opin. Pharmacother. (2002) 3:1657–1663.
  • PANKHURST T, ADU D: Antibodies in the prevention of renal allograft rejection. Expert Opin. Biol. Ther. (2004) 4:243–252.
  • SANDBOM WJ, HANAUER SB: Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results and safety. Inflamm. Bowel Dis. (1999) 5:119–133.
  • O'DELL JR: Therapeutic strategies for rheumatoid arthritis. N Engl. J. Med. (2004) 350:2591–2602.
  • PANACCIONE R, FEDORAK RN, AUMAIS G et al.: Canadian Association of Gastroenterology Clinical Practice Guidelines: the use of infliximab in Crohn's disease. Can. J. Gastroenterol. (2004) 18:503–508.
  • SAEZ-LLORENS X, CASTANO E, NULL D: Safety and pharmacokinetics of an intramuscular humanised antibody monoclonal antibody to respiratory syncitial virus in premature infants with bronchopulmonary dysplasia. Pediatr. Infra. Dis. (1998) 17:787–791.
  • GROOTHUIS JR, NISHIDA H: Prevention of respiratory syncitial virus infections in high-risk infants by monoclonal antibody (palivizumab). Pediatr. Int. (2002) 44:235–241.
  • BURTON DR: Antibodies, viruses and vaccines. Nat. Rev. Immunol (2002) 2:706–713.
  • HULS GA, HEIJNEN IA, CUOMO ME et al.: A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments. Nat. Biotechnol. (1999) 17:276–280.
  • FARAH RA, CLINCHY B, HERRERA L, VITETTA ES: The development of monoclonal antibodies for the therapy of cancer. Crit. Rev. Eukaryot. Gene Expr. (1998) 8:321–356.
  • CARTER P: Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer (2001) 1:118–129.
  • GURA T: Therapeutic antibodies: magic bullets hit the target. Nature (2002) 417:584–586.
  • KHAZAELI MB, CONRY RM, LOBUGLIO AF: Human response to monoclonal antibodies./ Immunother. (1994) 15:42–52.
  • PENDLEY G, SCHANTZ A, WAGNER C: Immunogenicity of therapeutic monoclonal antibodies. Curr. Opin. MoL Ther. (2003) 5:172–179.
  • MORRISON SL, JOHNSON MJ, HERZENBERG LA, 01 VT: Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA (1984) 21:6851–6855.
  • RIECHMANN L, CLARK M, WALDMANN H et al.: Reshaping human antibodies for therapy. Nature (1988) 332:323–327.
  • GREEN LL: Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies./ Immunol Methods (1999) 231:11–23.
  • HULS G, HEIJNEN IA, CUOMO E: Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgAl monoclonal antibodies. Cancer Res. (1999) 59:5778–5784.
  • PRESTA LG: Engineering antibodies fortherapy. Curr. Pharm. Biotechnol. (2002) 3:237–256.
  • WEIR AN, NESBITT A, CHAPMAN AP, POPPLEWELL AG, ANTONIW P, LAWSON AD: Formatting antibody fragments to mediate specific therapeutic functions. Biochem. Soc. Trans. (2002) 30:512–516.
  • CHOY EH, HAZLEMAN B, SMITH M: Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a Phase II double-blinded, randomized, dose-escalating trial. Rheumatology (2002) 41:1133–1137.
  • WINTER G, MILSTEIN C: Man-made antibodies. Nature (1991) 349:293–299.
  • WINTER G, GRIFFITHS AD, HAWKINS RE, HOOGENBOOM HR: Making antibodies by phage display technology. Annu. Rev. Immunol (1994) 12:433–455.
  • BETTER M, CHANG CP, ROBINSON RR, HORWITZ AH: Escherichia coli secretion of an active chimeric antibody. Science (1988) 240:1041–1043.
  • FRENKEN L, HESSING JG, VAN DEN HONDEL CA. VERRIPS CT: Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res. Immunol (1998) 149:589–598.
  • ADAMS GP, SCHIER R, MCCALL AM: High affinity restricts the localisation and tumor penetration of single-chain Fit antibody molecules. Cancer Res. (2001) 61:4750–4755.
  • WU AM, YAZAKI PJ: Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nud Med. (2000) 44:268–283.
  • YOKOTA T, MILENIC DE, WHITLOW M, SCHLOM J: Rapid tumor penetration of a single-chain Fit and comparison with other immunoglobulin forms. Cancer Res. (1990) 52:3402–3408.
  • HUDSON PJ, SOURIAU C: Engineered antibodies. Nat. Med. (2003) 9:139–134.
  • NIELSEN UB, ADAMS GP, WEINER LM, MARKS JD: Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. (2000) 60:6434–6440.
  • HUDSON PJ, SOURIAU C: Recombinant antibodies for cancer diagnosis and therapy. Expert Opin. Biol. Ther. (2001) 1:845–855.
  • TODOROVSKA A, ROOVERS RC, DOLEZAL O: Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods (2001) 248:47–66.
  • WILLUDA J, HONEGGER A, WAIBEL R et al: High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fit fragment. Cancer Res. (1999) 59:5758–5767.
  • WHITLOW M, BELL BA, FENG SL et al.: An improved linker for single-chain Fit with reduced aggregation and enhanced proteolytic stability. Protein Eng. (1993) 6:989–995.
  • WARD ES, GOSSOW DH, GRIFFITHS AD, JONES PT, WINTER G: Binding activities of a single immunoglobulin variable domain secreted from E. coli. Nature (1989) 341:544-546. First report on the possibility of obtaining single-domain antibody fragments from immunised mice.
  • BORREBAECK CAK, MALMBORG AC, FUREBRING C et al.: Kinetic analysis of recombinant antibody-antigen interactions: relation between structural domains and antigen binding. Biotechnology (1992) 10:697–698.
  • JESPERS L, SCHON O, FAMM K, WINTER G: Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat. Biotechnol. (2004) 22:1161–1165.
  • HAMERS-CASTERMAN C, ATARHOUCH T, MUYLDERMANS S et al.: Naturally occurring antibodies devoid of light chains. Nature (1993) 363:446-448. First report on the occurrence of HCAbs in camelids.
  • ORLANDI R, GOSSOW DH, JONES PT, WINTER G: Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA (1989) 86:3833–3837.
  • NGUYEN VK, HAMERS R, WYNS L, MUYLDERMANS S: Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IgG2a heavy-chain antibodies. Mol Immunol (1999) 36:515–524.
  • WOOLVEN BP, FRENKEN LG, VAN DER LOGT P, NICHOLLS PJ: The structure of the llama heavy-chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics (1999) 50:98–101.
  • PADLAN EA: Anatomy of the antibody molecule. Md. Immunol (1994) 31:169–217.
  • DESMYTER A, TRANSUE TR, ARBABI-GHAHROUDI M et al: Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. (1996) 3:803–811.
  • •First description of the structure of a nanobody in complex with its target.
  • SPINELLI S, FRENKEN L, BOURGEOIS D et al: The crystal structure of the llama heavy chain variable domain. Nat. Struct. Biol (1996) 3:752–757.
  • DECANNIERE K, DESMYTER A. LAUWEREYS M, GHAROUDI MA, MUYLDERMANS S, WYNS L: A single-domain antibody fragment in complex with RNase k non-canonical loop structures and nanomolar affinity using two CDR loops. Struct. Fold. Des. (1999) 7:361–370.
  • RENISIO JG, ROMI-LEBRUN R, BLANC E: Solution structure and backbone dynamics of an antigen-free heavy chain variable domain (VHH) from llama. Prot. Struct. Funct. Genet. (2002) 47:546–555.
  • VRANKEN W, TOLKATCHEV D, XU P: Solution structure of a llama single-domain antibody with hydrophobic residues typical of the VH/VL interface. Biochemistry (2002) 41:8570–8579.
  • DECANNIERE K, MUYLDERMANS S, WYNS L: Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? J. Mol Biol. (2000) 300:83–91.
  • VU KB, GHARHOUDI MA, WYNS L, MUYLDERMANS S: Comparison of llama VH sequences from conventional and heavy chain antibodies. MoL Immunol (1997) 34:1121–1131.
  • NGUYEN VK, HAMERS R, WYNS L, MUYLDERMANS S: Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J. (2000) 19:921–931.
  • •Description of the mechanisms involved in enlarging the antigen-binding repertoire of nanobodies.
  • MUYLDERMANS S, CAMBILLAU C, WYNS L: Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem. Sci. (2001) 26:230–235.
  • WU TT, JOHNSON G, KABAT EA: Length distribution of CDRH3 in antibodies. Proteins (1993) 16:1–7.
  • HARMSEN MM, RUULS RC, NIJMAN IJ, NIEWOLD TA, FRENKEN LG, DE GEUS B: Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. MoL ImmunoL (2000) 37:579–590.
  • MUYLDERMANS S, ATARHOUCH T, SALDHANA J, BARBOSA JA, HAMERS R: Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. (1994) 7:1129–1135.
  • KABAT E, WU TT, PERRY HM, GOTTESMAN KS, FOELLER C: Sequence of Proteins of Immunological Interest. (1991). US Public Health Services, NIH Bethesda, MD, Publication No. 91.
  • RIECHMANN L, MUYLDERMANS S: Single-domain antibodies: comparison of camel VH and camelised human VH domains. J. Immunol. Methods (1999) 231:25–38.
  • DAVIES J, RIECHMANN L: `Camelising' human antibody fragments: NMR studies on VH domains. FEBS Lett. (1994) 339:285–290.
  • •First description of `camelisation' of human antibody fragments.
  • KORTT AA, GUTHRIE RE, HINDS MG: Solution properties of Escherichia co/i-expressed VH domain of anti-neuraminidase antibody NC41. J. Protein Chem. (1995) 14:167–178.
  • DAVIES J, RIECHMANN L: Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng. (1996) 9:531–537.
  • MARTIN F, VOLPARI C, STEIKOHLER C et al: Affinity selection of a camelised VH domain antibody inhibitor of hepatitis C virus N53 protease. Protein Eng. (1997) 10:607–614.
  • VOORDIJK S, HANSSON T, HILVERT D, VAN GUNSTEREN WF: Molecular dynamics simulations highlight mobile regions in proteins: a novel suggestion for converting a murine VH domain into a more tractable species. J. Md. Biol. (2000) 300:963–973.
  • RIECHMANN L: Rearrangement of theformer VL interface in the solution structure of a camelised, single antibody VH domain. J. MoL Biol. (1996) 259:957–969.
  • TANHA J, XU P, CHEN Z et al: Optimaldesign features of camelised human single-domain antibody libraries. J. Biol. Chem. (2001) 276:24774–24780.
  • EWERT S, CAMBILLAU C, CONRATH K, PLUCKTHUN A: Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry (2002) 41:3628–3636.
  • EWERT S, HUBER T, HONEGGER A,PLUCKTHUN A: Biophysical properties of human antibody variable domains./ Md. Bid. (2003) 325:531–553.
  • AIRES DA SILVA F, SANTA-MARTA M, FREITAS-VIEIRA A et al.: Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J. Mo/. Bid. (2004) 340:525–542.
  • GREENBERG AS, AVILA D, HUGHES M, HUGHES A, MCKINNEY EC, FLAJNIK MF: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature (1995) 374:168–173.
  • STANFIELD RL, DOOLEY H, FLAJNIK MF, WILSON IA: Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science (2004) 305:1770–1773.
  • STRELTSOV VA, VARGHESE JN, CARMICHAEL JA, IRVING RA, HUDSON PJ, NUTTALL SD: Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc. Natl. Acad. Sci. USA (2004) 101:12444–12449.
  • HUFTON SE, VAN NEER N, VAN DEN BEUKEN T, DESMET J, SABLON E, HOOGENBOOM HR: Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands. FEBS Lett. (2000) 475:225–231.
  • KARATAN E, MERGUERIAN M, HAN Z, SCHOLLE MD, KOIDE S, KAY BK: Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain. Chem. Biol. (2004) 11:835–844.
  • KOIDE A, BAILEY CW, HUANG X, KOIDE S: The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. (1998) 284:1141–1151.
  • HOOGENBOOM HR, DE BRUINE A, HUFTON SE, HOET RM, ARENDS JW, ROOVERS RC: Antibody phage display technology and its applications. Immunotechnology (1998) 4:309–318.
  • GHARHOUDI MA, DESMYTER A, WYNS L, HAMERS R, MUYLDERMANS S: Selection and identification of single-domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. (1997) 414:521–526.
  • LAUWEREYS M, GHARHOUDI MA, DESMYTER A et al.: Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. (1998) 17:3512–3520.
  • ••First report of nanobodies asenzyme inhibitors.
  • CORTEZ-RETAMOZO V, BACKMANN N, SENTER P et al: Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. (2004) 64:2853–2857.
  • •First report describing the efficiency of nanobodies as cancer therapeutics.
  • FRENKEN L, HESSING JG, VAN DEN HONDEL CA, VERRIPS CT: Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res. Immunol (1998) 149:589–598.
  • REITER Y, SCHUCK P, BOYD LF, PLASKIN D: An antibody single-domain phage display library of a native heavy chain variable region: isolation of functional single-domain VH molecules with a unique interface./ Mot Bid. (1999) 290:685–698.
  • YAU KY, GROVES MA, LI S et al.: Selection of hapten-specific single domain antibodies from a non-immunized llama ribosome display library. J. Immunol Methods (2003) 281:161–175.
  • HAWKINS RE, RUSSELL SJ, WINTER G: Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mo/. Biol. (1992) 226:889–896.
  • MARKS JD, GRIFFITHS AD, MALMQVIST M, CLACKSON TP, BYE JM, WINTER G: By-passing immunisation: building high affinity human antibodies by chain shuffling. Biotechnology (1992) 10:779–783.
  • LOW NM, HOLLIGER PH, WINTER G: Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. MoL Biol (1996) 260:359–368.
  • JOOSTEN V LOKMAN C, VAN DEN HONDEL CA, PUNT PJ: The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb. Cell Fact. (2003) 2:1.
  • FRENKEN L, VAN DER LINDEN RH, HERMANS PW et al.: Isolation of antigen-specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J. Biotechnol (2000) 78:11–21.
  • VAN DER VAART JM: Expression of VHH antibody fragments in Saccharomyces cerevisiae. Methods Mol Biol. (2002) 178:359–366.
  • VAN DER LINDEN RH, DE GEUS B, FRENKEN GJ, PETERS H, VERRIPS CT: Improved production and function of llama heavy chain antibody fragments by molecular evolution. Biotechnol (2000) 80:261–270.
  • VAN DER LINDEN RH, FRENKEN LG, DE GEUS B et al.: Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochem. Biophys. Acta (1999) 1431:37–46.
  • PEREZ JM, ENISIO JG, PROMPERS JJ et al: Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry (2001) 40:74–83.
  • DUMOULIN M, CONRATH K, VAN MEIRHAEGHE A et al: Single-domain antibody fragments with high conformational stability. Protein Sci. (2002) 11:500–515.
  • WORN A, PLI:JCKTHUN A: Stability engineering of antibody single-chain Fit fragments. J. Mo/. Bid. (2001) 305:989–1010.
  • EWERT S, HONEGGER A, PLUCKTHUN A: Structure-based improvement of the biophysical properties of immunoglobulin VH domains with a generalisable approach. Biochemistry (2003) 42:1517–1528.
  • SPINELLI S, FRENKEN LG, HERMANS P et al.: Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry (2000) 39:1217–1222.
  • •First crystal structure of a nanobody in complex with its cognate hapten.
  • SPINELLI S, TEGONI M, FRENKEN L, VAN VLIET C, CAMBILLAU C: Lateral recognition of a dye hapten by a llama VHH domain. J. Mo/. Bid. (2001) 311:123–129.
  • RAHBARIZADEH F, RASAEE MJ, MOGHADAM FM, ALLAMEH AA, SADRODDINY E: Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid. Hybridomics (2004) 23:151–159.
  • LEDEBOER AM, BEZEMER S, DE HAARD JJ et al: Preventing phage lysis of Lactococcus lactis in cheese production using a neutralizing heavy-chain antibody fragment from llama. J. Dairy Sci. (2002) 85:1376–1382.
  • STIJLEMANS B, CONRATH K, CORTEZ-RETAMOZO Vet al.: Efficient targeting of conserved cryptic epitopes of infectious agents by single-domain antibodies. African trypanosomes as a paradigm. J. Biol. Chem. (2004) 279:1256–1261.
  • •First report on nanobodies recognising cryptic epitopes.
  • LASKOWSKI RA, LUSCOMBE NM, SWINDELLS MB, THORNTON JM: Protein clefts in molecular recognition and function. Protein Sci. (1996) 5:2438–2452.
  • WEBSTER DM, HENRY AH, REES AR: Antibody-antigen interactions. Curr. Opin. Struct. Biol (1994) 4:123–129.
  • PADLAN EA: X-ray crystallography of antibodies. Adv. Protein Chem. (1996) 49:57–133.
  • TRANSUE TR, DE GENST E, GHARHOUDI MA, WYNS L, MUYLDERMANS S: Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. Prot. Struct Funct. Genet. (1998) 32:515–522.
  • DESMYTER A, SPINELLI S, PAYAN F, LAUWEREYS M, WYNS L, MUYLDERMANS S: Three camelid VHH domains in complex with porcine pancreatic alpha amylase. Inhibition and versatility of binding topology. J. Biol Chem. (2002) 277:23645–23650.
  • ROBERT B, DORVILLIUS M, BUCHEGGER F: Tumor targeting with newly designed biparatopic antibodies directed against two different epitopes of the carcinoembryonic antigen (CEA). Int. J. Cancer (1999) 81:285–291.
  • SEGAL DM, WEINER GJ, WEINER LM: Bispecific antibodies in cancer therapy. Curr. Opin. Immund (1999) 11:558–562.
  • HUDSON P, SOURIAU C: Engineered antibodies. Nat. Med. (2003) 1:129–134.
  • KIPRIYANOV SM: Generation of bispecific and tandem diabodies. Methods MoL Biol (2002) 178:317–331.
  • CONRATH K, LAUWEREYS M, WYNS L, MUYLDERMANS S: Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J. Biol. Chem. (2001) 276:7346–7350.
  • ZHANG J, TANHA J, HIRAMA T et cll.: Pentamerization of single-domain antibodies from phage libraries: a novel strategy for the rapid generation of high-avidity antibody reagents. J. MoL Biol. (2004) 335:49–56.
  • PLESCHBERGER M, SAERENS D, WEIGERT S, SLEYTR UB, MUYLDERMANS S, SARA M: An S-layer heavy chain camel antibody fusion protein for generating of a nanopatterned sensing layer to detect the prostate specific antigen by surface plasmon resonance technique. Bioconjug-. Chem. (2004) 15:664–671.
  • PLESCHBERGER M, NEUBAUER A, EGELSEER EM et al.: Generation of a functional mononuclear protein lattice consisting of an S-layer fusion protein comprising the variable domain of a camel heavy-chain antibody. Bioconjug Chem. (2003) 14:440–448.
  • DUMOULIN M, LAST AM, DESMYTER A et al.: A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature (2003) 424:783–788.
  • •First report of nanobodies interfering with fibril formation.
  • LORIS R, MARIANOVSKY I, LAB J et al.: Crystal structure of the intrinsically flexible addiction antidote MazE. J. Biol. Chem. (2003) 278:28252–28257.
  • VAN KONINGSBRUGGEN S, DE HAARD H, DE KIEVIT P et al.: Llama derived phage display antibodies in the dissection of the human disease oculapharyngeal muscular dystrophy. Immund Methods (2003) 279:149–161.
  • JOBLING AS, JARMAN C, TEH MM, HOLMBERG N, BLAKE C, VERHOEYEN ME: Immunomodulation of enzyme function in plants by single-domain antibodies. Nat. Biotechnol (2003) 21:77–80.
  • •First description of a nanobody as an intrabody.
  • CONRATH KE, WERNERY U, MUYLDERMANS S, NGUYEN VK: Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev. Comp. Immund (2003) 27:87–103.
  • DEKKER S, TOUSSAINT W, PANAYOTOU G et al.: Intracellularly expressed single domain antibody against p15 matrix protein prevents the production of porcine retroviruses. j Virol. (2003) 77:12132–12139.
  • KONTERMAN RE: Intrabodies as therapeutic agents. Methods (2004) 34:163–170.
  • AUF DER MAUR A, ESCHER D, BARBERIS k Antigen-independent selection of stable intracellular single-chain antibodies. FEBS Lett. (2001) 508:407–412.
  • VISINTIN M, QUONDAM M, CATTANEO A: The intracellular antibody capture technology (TACT): towards a consensus sequence for intracellular antibodies. J. Mol Biol. (2002) 317:73–83.
  • ROSEBROUGH SF: Two-step immunological approaches for imaging and therapy. (2., J. Nud Med. (1996) 40:234–251.
  • ZUCKIER LS, DENARDO GL: Trials and tribulations: oncological antibody imaging comes to the fore. Semin. Nucl. Med. (1997) 27:10–29.
  • SUNDARESAN G, YAZAKI PJ, SHIVELY JE et al.: 124I-labeled engineered anti-CEA minibodies and diabodies allow high contrast, antigen-specific small-animal PET imaging of xenografts in mice. J. Nud Med. (2003) 44:1962–1969.
  • CORTEZ-RETAMOZO V, LAUWEREYS M, HASSANZADEH GH et al.: Efficient tumor targeting by single-domain antibody fragments of camels. Int. J. Cancer (2002) 98:456–462.
  • ••First report describing thetumour-targeting properties of nanobodies.
  • WAIBEL R, ALBERTO R, WILLUDA J et al.: Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat. Bioteehnol. (1999) 17:897–901.
  • NIKOLAJCZYK SD, CATALONA WJ, EVANS CL et al.: Proenzyme forms of prostate-specific antigen in serum improve the detection of prostate cancer. Clin. Chem. (2004) 50:1017–1025.
  • SAERENS D, KINNE J, BOSMANS E, WERNERY U, MUYLDERMANS S, CONRATH K: Single-domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J. Biol. Chem. (2004) 279(50):51965–51972.
  • PAWELEK JM, BROOKS KL, BERMUDES D: Bacteria as tumor-targeting vectors. Lancet Oncol. (2003) 4:548–556.
  • VEIGA E, DE LORENZO V, FERNANDEZ Lk Structural tolerance of bacterial autotransporters for folded passenger protein domains. MoL Microbid (2004) 52:1069–1080.
  • MURUGANANDAM A, TANHA J, NARANG S, STANIMIROVIC D: Selection of phage-displayed llama single-chain domain antibodies that transmigrate across human blood-brain barrier endothelium. FASEB J. (2001) 16(2):240–242.
  • •First description of a nanobody crossing the BBB.
  • CHAPMAN AP: PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. (2002) 54:531–545.
  • BENDER E, WOOF JM, ATKIN JD, BARKER MD, BEBBINGTON CR, BURTON DR: Recombinant human antibodies: linkage of a Fab fragment from a combinatorial library to an Fc fragment for expression in mammalian cell culture. Hum. Antibodies Hybridomas (1993) 4:74–79.
  • SMITH BJ, POPPLEWELL A, ATHWAL D et al.: Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjug-. Chem. (2001) 12:750–756.
  • JUNGHANS RP: Finally! The Brambell receptor (FcRB): mediator of transmission of immunity and protection from catabolism for IgG. Immund Res. (1997) 16:29–57.
  • CHAUDHURY C, MEHNAZ S, ROBINSON JM et al.: The major histocompatibility complex-related Fe receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J. Exp. Med. (2003) 197:315–322.
  • DENNIS MS, ZHANG M, MENG YG et al.: Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. (2002) 277:35035–35043.
  • TANHA J, DUBUC G, HIRAMA T, NARANG SA, MACKENZIE CR: Selection by phage display of llama conventional V(H) fragments with heavy chain antibody V(H)H properties. J. Immunol Methods (2002) 263:97–109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.