71
Views
12
CrossRef citations to date
0
Altmetric
Review

Antisense therapy for restenosis following percutaneous coronary intervention

, , &
Pages 79-89 | Published online: 20 Apr 2005

Bibliography

  • STEINMAN RM, KAPLAN G, WITMER MD, COHN ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. V Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J. Exp. Med. (1979) 149(1):1–16.
  • STEINMAN RM, ADAMS JC, COHN ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. IV Identification and distribution in mouse spleen. J. Exp. Med. (1975) 141(4):804–820.
  • STEINMAN RM, GUTCHINOV B, WITMER MD, NUSSENZWEIG MC: Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J. Exp. Med. (1983) 157(2):613–627.
  • SCHULER G, STEINMAN RM: Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. (1985) 161(3):526–546.
  • BANCHEREAU J, STEINMAN RM: Dendritic cells and the control of immunity. Nature (1998) 392(6673):245–252.
  • MELLMAN I, TURLEY SJ, STEINMAN RM: Antigen processing for amateurs and professionals. Trends Cell Biol. (1998) 8(6):231–237.
  • BANCHEREAU J, BRIERE F, CAUX C et al.: Immunobiology of dendritic cells. Annu. Rev. Immunol. (2000) 18:767–811.
  • STEINMAN RM: Some interfaces of dendritic cell biology. APMIS (2003) 111(7-8):675–697.
  • SCHULER G, SCHULER-THURNER B, STEINMAN RM: The use of dendritic cells in cancer immunotherapy. Curr. Opin. ImmunoL (2003) 15(2):138–147.
  • ARDAVIN C: Origin, precursors and differentiation of mouse dendritic cells. Nat. Rev. ImmunoL (2003) 3(7):582–590.
  • ARDAVIN C, AMIGORENA S, REIS E SOUSA C: Dendritic cells: immunobiology and cancer immunotherapy. Immunity (2004) 20(0:17–23.
  • STEINMAN RM, HAWIGER D, NUSSENZWEIG MC: Tolerogenic dendritic cells. Annu. Rev. ImmunoL (2003) 21:685–711.
  • BONIFAZ L, BONNYAY D, MAHNKE K et al.: Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. (2002) 196(12):1627–1638.
  • BONIFAZ LC, BONNYAY DP, CHARALAMBOUS A et ed.: In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. (2004) 199(6):815–824.
  • RONCAROLO MG, LEVINGS MK, TRAVERSARI C: Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med. (2001) 193(2):F5–F9.
  • TAKEDA K, KAISHO T, AKIRA S: Toll-like receptors. Annu. Rev. ImmunoL (2003) 21:335–376.
  • LANZAVECCHIA A: Immunology. Licence to kill. Nature (1998) 393(6684):413–414.
  • KNIGHT SC, HUNT R, DORE C, MEDAWAR PB: Influence of dendritic cells on tumor growth. Proc. NatL Acad. Sci. USA (1985) 82(13):4495–4497.
  • PORGADOR A, SNYDER D, GILBOA E: Induction of antitumor immunity using bone marrow-generated dendritic cells. J. ImmunoL (1996) 156(8):2918–2926.
  • ZITVOGEL L, MAYORDOMO JI, TJANDRAWAN T et al.: Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. (1996) 183(1):87–97.
  • CELLUZZI CM, MAYORDOMO JI, STORKUS WJ, LOTZE MT, FALO LD JR: Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J. Exp. Med. (1996) 183(1):283–287.
  • MAYORDOMO JI, ZORINA T, STORKUS WJ et al.: Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med. (1995) 1(12):1297–1302.
  • HSU FJ, BENIKE C, FAGNONI F et al.: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. (1996) 2(1):52–58.
  • OSSEVOORT MA, FELTKAMP MC, VAN VEEN KJ, MELIEF CJ, KAST WM: Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. Immunother. Emphasis Tumor ImmunoL (1995) 18(2):86–94.
  • PORGADOR A, GILBOA E: Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J. Exp. Med. (1995) 182(1):255–260.
  • STEINMAN RM, DHODAPKAR M: Active immunization against cancer with dendritic cells: the near future. Int. J. Cancer (2001) 94(4):459–473.
  • ASHLEY DM, FAIOLA B, NAIR S et aL: Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med. (1997) 186(7):1177–1182.
  • NAIR SK, SNYDER D, ROUSE BT, GILBOA E: Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int. J. Cancer (1997) 70(6):706–715.
  • NESTLE FO, ALIJAGIC S, GILLIET M et al.: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. (1998) 4(3):328–332.
  • ALBERT ML, SAUTER B, BHARDWAJ N: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature (1998) 392(6671):86–89.
  • LARSSON M, FONTENEAU JF, BHARDWAJ N: Dendritic cells resurrect antigens from dead cells. Trends Immunol. (2001) 22(3):141–148.
  • FERLAZZO G, SEMINO C, SPAGGIARI GM et al.: Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates. Int. ImmunoL (2000) 12021:1741–1747.
  • ALBERT ML, PEARCE SF, FRANCISCO LM et al.: Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. (1998) 188(7):1359–1368.
  • STROME SE, VOSS S, WILCOX R et al.: Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res. (2002) 62(6):1884–1889.
  • BOCZKOWSKI D, NAIR SK, SNYDER D, GILBOA E: Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. (1996) 184(2):465–472.
  • GILBOA E, VIEWEG J: Cancer immunotherapy with mRNA-transfected dendritic cells. ImmunoL Rev. (2004) 199:251–263.
  • GONG J, CHEN D, KASHIWABA M, KUFE D: Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat. Med. (1997) 3(5):558–561.
  • AVIGAN D, VASIR B, GONG Jet al.: Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin. Cancer Res. (2004) 10041:4699–4708.
  • GONG J, CHEN D, KASHIWABA M et al.: Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc. NatL Acad. Sci. USA (1998) 95(11):6279–6283.
  • INABA K, INABA M, ROMANI N et aL: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/ macrophage colony-stimulating factor. J. E. Med. (1992) 176(6):1693–1702.
  • SALLUSTO F, LANZAVECCHIA A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. (1994) 179(4):1109–1118.
  • TIMMERMAN JM, LEVY R: Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med. (1999) 50:507–529.
  • FIGDOR CG, DE VRIES IJ, LESTERHUIS WJ, MELIEF CJ: Dendritic cell immunotherapy: mapping the way. Nat. Med. (2004) 10(5):475–480.
  • KUGLER A, STUHLER G, WALDEN P et al.: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med. (2000) 6(3):332–336.
  • THURNER B, HAENDLE I, RODER C et al.: Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. (1999) 190(11):1669–1678.
  • PACZESNY S, BANCHEREAU J, WITTKOWSKI KM et al.: Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med. (2004) 199(11):1503–1511.
  • NESTLE FO, BANCHEREAU J, HART D: Dendritic cells: on the move from bench to bedside. Nat. Med. (2001) 7(7):761–765.
  • MELERO I, VILE RG, COLOMBO MP: Feeding dendritic cells with tumor antigens: self-service buffet or a la carte? Gene Ther. (2000) 7001167–1170.
  • BEVAN MJ: Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. (1976) 143(5):1283–1288.
  • HEATH WR, BELZ GT, BEHRENS GM et al.: Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. ImmunoL Rev. (2004) 199:9–26.
  • BELZ GT, BEHRENS GM, SMITH CM et al.: The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. (2002) 196(8):1099–1104.
  • GUERMONPREZ P, VALLADEAU J, ZITVOGEL L, THERY C, AMIGORENA S: Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. ImmunoL (2002) 20:621–667.
  • ROY CR: Immunology: professional secrets. Nature (2003) 425(6956):351–352.
  • KOVACSOVICS-BANKOWSKI M, ROCK KL: A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science (1995) 267(5195):243–246.
  • GUERMONPREZ P, SAVEANU L, KLEIJMEER M et al.: ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature (2003) 425(69561:397–402.
  • HOUDE M, BERTHOLET S, GAGNON E et al.: Phagosomes are competent organelles for antigen cross-presentation. Nature (2003) 425(6956):402–406.
  • LIZEE G, BASHA G, TIONG J et al.: Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. ImmunoL (2003) 4(11):1065–1073.
  • BEIGNON AS, SKOBERNE M, BHARDWAJ N: Type I interferons promote cross-priming: more functions for old cytokines. Nat. ImmunoL (2003) 4(10):939–941.
  • LE BON A. ETCHART N, ROSSMANN C et al.: Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. ImmunoL (2003) 4041009–1015.
  • HUANG AY, GOLUMBEK P, AHMADZADEH M et al.: Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science (1994) 264(5161):961–965.
  • ZINKERNAGEL RM: On cross-priming of MHC class I-specific CTL: rule or exception? Eur. j ImmunoL (2002) 32(9):2385–2392.
  • OCHSENBEIN AF, SIERRO S, ODERMATT B et al.: Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature (2001) 411(6841):1058–1064.
  • KUNDIG TM, BACHMANN MF, DIPAOLO C et al.: Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science (1995) 268(5215):1343–1347.
  • OCHSENBEIN AF, KLENERMAN P, KARRER U et al.: Immune surveillance against a solid tumor fails because of immunological ignorance. Proc. Natl Acad. Sci. USA (1999) 96(5):2233–2238.
  • MELIEF CJ: Mini-review: Regulation of cytotoxic T lymphocyte responses by dendritic cells: peacefid coexistence of cross-priming and direct priming? Eur. Immunol (2003) 33(10):2645–2654.
  • JUNG S, UNUTMAZ D, WONG P et al: In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity (2002) 17(2):211–220.
  • THOMAS AM, SANTARSIERO LM, LUTZ ER et al.: Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients./ Exp. Med. (2004) 200(3):297–306.
  • REICHERT TE, SCHEUER C, DAY R, WAGNER W, WHITESIDE TL: The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer (2001) 91(11):2136–2147.
  • IWAMOTO M, SHINOHARA H, MIYAMOTO A et al.: Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int. J. Cancer (2003) 104(1):92–97.
  • ISHIGAMI S, NATSUGOE S, MATSUMOTO M et al.: Clinical implications of intratumoral dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep. (2003) 10(5):1237–1240.
  • ALLAN RS, SMITH CM, BELZ GT et al: Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science (2003) 301(5641):1925–1928.
  • KLEINDIENST P, BROCKER Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo. J. Immunol (2003) 170(0:2817–2823.
  • BELL D, CHOMARAT P, BROYLES D et al.: In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J. Exp. Med. (1999) 190(141417–1426.
  • SRI VASTAVA P: Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol (2002) 2(3):185–194.
  • SRI VASTAVA P: Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol (2002) 20:395–425.
  • BASU S, BINDER RJ, RAMALINGAM T, SRIVASTAVA PK: CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity (2001) 14(3):303–313.
  • BINDER RJ, HAN DK, SRIVASTAVA PK: CD91: a receptor for heat shock protein gp96. Nat. Immunol (2000) 1(2):151–155.
  • NORBURY CC, BASTA S, DONOHUE KB et al: CD8+ T cell cross-priming via transfer of proteasome substrates. Science (2004) 304(5675):1318–1321.
  • WOLKERS MC, BROUWENSTIJN N, BAKKER AH, TOEBES M, SCHUMACHER TN: Antigen bias in T cell cross-priming. Science (2004) 304(5675):1314–1317.
  • IYODA T, SHIMOYAMA S, LIU K et al: The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. (2002) 195(10):1289–1302.
  • RUSSO V, ZHOU D, SARTIRANA C et al.: Acquisition of intact allogeneic human leukocyte antigen molecules by human dendritic cells. Blood (2000) 95(11):3473–3477.
  • WOLFERS J, LOZIER A. RAPOSO G et al.: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. (2001) 7(3):297–303.
  • ARINA A, TIRAPU I, ALFARO C et al: Clinical implications of antigen transfer mechanisms from malignant to dendritic cells, exploiting cross-priming. Exp. Hematol (2002) 30(12):1355–1364.
  • MELCHER A, TODRYK S, BATEMAN A et al.: Adoptive transfer of immature dendritic cells with autologous or allogeneic tumor cells generates systemic antitumor immunity. Cancer Res. (1999) 59(12):2802–2805.
  • MELERO I, DUARTE M, RUIZ Jet al: Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther. (1999) 6(10):1779–1784.
  • NISHIOKAY, HIRAO M, ROBBINS PD, LOTZE MT, TAHARA H: Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res. (1999) 59(10:4035–4041.
  • TRINCHIERI G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol (2003) 3(2):133–146.
  • MA X, TRINCHIERI G: Regulation of interleukin-12 production in antigen-presenting cells. Adv. Immunol (2001) 79:55–92.
  • TRINCHIERI G, SCOTT P: Interleukin-12: basic principles and clinical applications. Curr. Top. Microbiol Immunol (1999) 238:57–78.
  • ARTHUR JF, BUTTERFIELD LH, ROTH MD et al.: A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther. (1997) 4(1):17–25.
  • SONG W, KONG HL, CARPENTER H et al.: Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity./ Exp. Med. (1997) 186(8):1247–1256.
  • READ, SCHAGEN FH, HOEBEN RC et al.: Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset. J. Wrol. (1999) 73(12):10245–10253.
  • MILLER G, LAHRS S, PILLARISETTY VG, SHAH AB, DEMATTEO RP: Adenovirus infection enhances dendritic cell immunostimulatory properties and induces natural killer and T-cell-mediated tumor protection. Cancer Res. (2002) 62(18):5260–5266.
  • MORELLI AE, LARREGINA AT, GANSTER RW et al.: Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. Wrol. (2000) 74(20):9617–9628.
  • STOCKWIN LH, MATZOW T, GEORGOPOULOS NT et al: Engineered expression of the Coxsackie B and adenovirus receptor (CAR) in human dendritic cells enhances recombinant adenovirus-mediated gene transfer. Immunol Methods (2002) 259(1-2):205–215.
  • PEREBOEV AV NAGLE JM, SHAKHMATOV MA et al: Enhanced gene transfer to mouse dendritic cells using adenoviral vectors coated with a novel adapter molecule. MoL Ther. (2004) 9(5):712–720.
  • TATSUMI T, HUANG J, GOODING WE et al.: Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tcl -typeimmunity. Cancer Res. (2003) 63(19):6378–6386.
  • TILLMAN BW, HAYES TL, DEGRUIJLTD, DOUGLAS JT, CURIEL DT: Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. (2000) 60(19):5456–5463.
  • TILLMAN BW, DE GRUIJL TD, LUYKX-DE BAKKER SA et aL: Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J. ImmunoL (1999) 162(10:6378–6383.
  • CHIRIVA-INTERNATI M, LIU Y, SALATI E et al.: Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/ human papillomavirus type 16 E7 antigen gene transduction into dendritic cells. Eur. J. ImmunoL (2002) 32(1):30–38.
  • SCHROERS R, CHEN SY: Lentiviral transduction of human dendritic cells. Methods MoL Biol. (2004) 246:451–459.
  • SATOH Y, ESCHE C, GAMBOTTO A et al.: Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J. Exp. Ther. OncoL (2002) 2(6):337–349.
  • TIRAPU I, ARINA A, MAZZOLINI G et al.: Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens. Int. J. Cancer (2004) 110(1):51–60.
  • RODRIGUEZ-CALVILLO M, DUARTE M, TIRAPU I et aL: Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12. Exp. HematoL (2002) 30(3):195–204.
  • HIRAO M, ONAI N, HIROISHI K et aL: CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res. (2000) 60(8):2209–2217.
  • AKIYAMA Y, WATANABE M, MARUYAMA K et al.: Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Ther. (2000) 7(202113–2121.
  • CHEN Y, EMTAGE P, ZHU Q et aL: Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther. (2001) 8(0316–323.
  • SHARMA S, BATRA RK, YANG SC et ell.: Interleukin-7 gene-modified dendritic cells reduce pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Hum. Gene Ther. (2003) 14(16):1511–1524.
  • SHARMA S, YANG SC, BATRA RK, DUBINETT SM: Intratumoral therapy with cytokine gene-modified dendritic cells in murine lung cancer models. Methods MoL Med. (2003) 75:711–722.
  • MILLER PW, SHARMA S, STOLINA M et al.: Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum. Gene Ther. (2000) 11(1):53–65.
  • SHARMA S, STOLINA M, YANG SC et al.: Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin. Cancer Res. (2003) 9(3):961–968.
  • SHARMA S, MILLER PW, STOLINA M et al.: Multicomponent gene therapy vaccines for lung cancer: effective eradication of established murine tumors in vivo with interleukin-7/herpes simplex thymidine kinase-transduced autologous tumor and ex vivo activated dendritic cells. Gene Ther. (1997) 4(12):1361–1370.
  • QUEZADA SA, JARVINEN LZ, LIND EF, NOELLE RJ: CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. ImmunoL (2004) 22:307–328.
  • KIKUCHI T, MOORE MA, CRYSTAL RG: Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood (2000) 96(0:91–99.
  • KIKUCHI T, MIYAZAWA N, MOORE MA, CRYSTAL RG: Tumor regression induced by intratumor administration of adenovirus vector expressing CD40 ligand and naive dendritic cells. Cancer Res. (2000) 60(22):6391–6395.
  • KIKUCHI T, WORGALL S, SINGH R, MOORE MA, CRYSTAL RG: Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells. Nat. Med. (2000) 6(10):1154–1159.
  • IINUMA T, HOMMA S, NODA T et aL: Prevention of gastrointestinal tumors based on adenomatous polyposis coli gene mutation by dendritic cell vaccine. J. Chn. Invest. (2004) 113(9):1307–1317.
  • LI Y, WANG MN, LI H et aL: Active immunization against the vascular endothelial growth factor receptor flkl inhibits tumor angiogenesis and metastasis. J. Exp. Med. (2002) 195(12):1575–1584.
  • NAIR S, BOCZKOWSKI D, MOELLER B et al.: Synergy between tumor immunotherapy and antiangiogenic therapy. Blood (2003) 102(3):964–971.
  • MAZZOLINI G, PRIETO J, MELERO I: Gene therapy of cancer with interleukin-12. Curr. Pharm. Des. (2003) 9(24):1981–1991.
  • MASHINO K, SADANAGA N, TANAKA F et al.: Effective strategy of dendritic cell-based immunotherapy for advanced tumor-bearing hosts: the critical role of Thl-dominant immunity. MoL Cancer Ther. (2002) 1(10):785–794.
  • NAKAHARA N, POLLACK IF, STORKUS WJ et al.: Effective induction of antiglioma cytotoxic T cells by coadministration of interferon-beta gene vector and dendritic cells. Cancer Gene Ther. (2003) 10(7):549–558.
  • SHIN JY LEE SK, KANG CD et aL: Antitumor effect of intratumoral administration of dendritic cell combination with vincristine chemotherapy in a murine fibrosarcoma model. HistoL HistopathoL (2003) 18(2):435–447.
  • TATSUMI T, GAMBOTTO A, ROBBINS PD, STORKUS WJ: Interleukin 18 gene transfer expands the repertoire of antitumor Thl-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Res. (2002) 62(20):5853–5858.
  • YAMANAKA R, ZULLO SA, RAMSEY J et al.: Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus- mediated interleukin-12. j Neurosurg (2002) 97(3):611–618.
  • EHTESHAM M, KABOS P, GUTIERREZ MA et al.: Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats. J. Immunother. (2003) 26(2):107–116.
  • SAIKA T, SATOH T, KUSAKA N et al.: Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther. (2004) 11(5):317–324.
  • TRIOZZI PL, KHURRAM R, ALDRICH WA et al.: Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer (2000) 89(12):2646–2654.
  • SANGRO B, MAZZOLINI G, RUIZ J et al.: Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J. Clin. Oncol. (2004) 22(8):1389–1397.
  • ALLAVENA P, SICA A, VECCHI A et ell.: The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol. Rev. (2000) 177:141–149.
  • FUSHIMI T, KOJIMA A, MOORE MA, CRYSTAL RG: Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J. Clin. Invest. (2000) 105(101383–1393.
  • MAZZOLINI G, NARVAIZA I, MARTINEZ-CRUZ LA et al.: Pancreatic cancer escape variants that evade immunogene therapy through loss of sensitivity to IFNgamma-induced apoptosis. Gene Ther. (2003) 10(13):1067–1078.
  • MARTIN-FONTECHA A, SEBASTIANI S, HOPKEN UE et al.: Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. (2003) 198(4):615–621.
  • HILLINGER S, YANG SC, ZHU Let al.: EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model./ Immunol. (2003) 171(12):6457–6465.
  • GUO J, WANG B, ZHANG M et a/.:146. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity. Gene Ther. (2002) 9(12):793–803.
  • XIA DJ, ZHANG WP, ZHENG S et ell.:147.Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gp100. Gene Ther. (2002) 9(9):592–601.
  • YANG SC, HILLINGER S, RIEDL K148.et al.: Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin. Cancer Res.149.(2004) 10(8):2891–2901.
  • DRANOFF G: GM-CSF-secreting melanoma vaccines. Oncogene (2003) 22(20):3188–3192.150.
  • SALGIA R, LYNCH T, SKARIN A et ell.: Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating151.factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. Oncol. (2003) 21(4):624–630.
  • PAN PY, LI Y, LI Q et ell.: In situ152.recruitment of antigen-presenting cells by intratumoral GM-CSF gene delivery. Cancer Immunol. Immunother. (2004) 53(1):17–25.
  • MILLER PW, SHARMA S, STOLINA M et al.: Dendritic cells augment granulocyte-macrophage colony-stimulating factor (GM-CSF)/herpes simplex virus thymidine kinase-mediated gene therapy of lung cancer. Cancer Gene Ther. (1998) 5(6):380–389.
  • HANAHAN D, WEINBERG RA: The hallmarks of cancer. Cell (2000) 100(1):57–70.
  • GORELIK L, FLAVELL RA: Transforming growth factor-beta in T-cell biology. Nat. Rev. Immunol. (2002) 2(1):46–53.
  • GORELIK L, FLAVELL RA: Immune-156.mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat. Med. (2001) 7(10):1118–1122.
  • OHM JE, GABRILOVICH DI, SEMPOWSKI GD et al.: VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood (2003) 101(12):4878–4886.
  • OYAMA T, RAN S, ISHIDA T et al.: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. Immunol. (1998) 160(3):1224–1232.
  • GABRILOVICH DI, CHEN HL, GIRGIS KR et al.: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. (1996) 2(10):1096–1103.
  • LEE WC, CHIANG YJ, WANG HC et aL: Functional impairment of dendritic cells caused by murine hepatocellular carcinoma. Clin. Immunol. (2004) 24(2):145–154.
  • WANG T, NIU G, KORTYLEWSKI M et aL: Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. (2004) 10(1):48–54.
  • CURIEL TJ, WEI S, DONG H et aL: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. (2003) 9(5):562–567.
  • MUNN DH, SHARMA MD, LEE JR et aL: Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science (2002) 297(55801867-1870.
  • MUNN DH, SHARMA MD, HOU D et al.: Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. (2004) 114(2):280–290.
  • MUNN DH, SHARMA MD, MELLOR AL: Ligation of B7-1/B7-2 byhuman CD4+ T cells triggers indoleamine2,3-dioxygenase activity in dendritic cells.Immunol. (2004) 172(7):4100–4110.
  • FALLARINO F, GROHMANN U, HWANG KW et aL: Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. (2003) 4(12):1206–1212.
  • GROHMANN U, FALLARINO F, PUCCETTI P: Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. (2003) 24(5):242–248.
  • GROHMANN U, ORABONA C, FALLARINO F et al.: CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. (2002) 3(11):1097–1101.
  • MELLOR AL, MUNN DH: IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. (2004) 4(10):762–774.
  • CONEJO-GARCIA JR, BENENCIA F, COURREGES MC et al.: Tumor- infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat. Med. (2004) 10(9):950–958.
  • MURAKAMI T, TOKUNAGA N, WAKU T et al.: Antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene. Clin. Cancer Res. (2004) 10(11):3871–3880.
  • KUMAGI T, AKBAR SM, HORIIKE N, ONJI M: Increased survival and decreased tumor size due to intratumoral injection of ethanol followed by administration of immature dendritic cells. Int. J. Oncol. (2003) 23(4):949–955.
  • TONG Y, SONG W, CRYSTAL RG: Combined intratumoral injection of bone marrow-derived dendritic cells and systemic chemotherapy to treat pre-existing murine tumors. Cancer Res. (2001) 61(20):7530–7535.
  • TEITZ-TENNENBAUM S, LI Q, RYNKIEWICZ S et al.: Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res. (2003) 63(23):8466–8475.
  • EZQUERRO IJ, LASARTE JJ, DOTOR J et al.: A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine (2003) 22(1-2):12–20.
  • YANG JC, HAWORTH L, SHERRY RM et al.: A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl. J. Med. (2003) 349(5):427–434.
  • UYTTENHOVE C, PILOTTE L, THEATE I et al.: Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. (2003) 9(10):1269–1274.
  • PHAN GQ, YANG JC, SHERRY RM et al.: Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA (2003) 100(14):8372–8377.
  • HODI FS, MIHM MC, SOIFFER RJ et al.: Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Nail. Acad. Sci. USA (2003) 100(8):4712–4717.
  • CASARES N, ARRIBILLAGA L, SAROBE P et al.: CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J. Immunol. (2003) 171(11):5931–5939.
  • PIRTSKHALAISHVILI G, SHURIN GV, GAMBOTTO A et al.: Transduction of dendritic cells with Bc1-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice. Immunol (2000) 165(4):1956–1964.
  • PHAN V ERRINGTON F, CHEONG SC et al.: A new genetic method to generate and isolate small, short-lived but highly potent dendritic cell-tumor cell hybrid vaccines. Nat. Med. (2003) 9(9):1215–1219.
  • AHMED A. JEVREMOVIC D, SUZUKI K et al.: Intratumoral expression of a fusogenic membrane glycoprotein enhances the efficacy of replicating adenovirus therapy. Gene Ther. (2003) 10(19):1663–1671.
  • BATEMAN AR, HARRINGTON KJ, KOTTKE T et al.: Viral fusogenic membrane glycoproteins kill solid tumor cells by nonapoptotic mechanisms that promote cross presentation of tumor antigens by dendritic cells. Cancer Res. (2002) 62(22):6566–6578.
  • SHIMIZU T, BERHANU A, REDLINGER RE, JR. et al.: Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma. Pediatr. Surg. (2001) 36(8):1285–1292.
  • KIRK CJ, HARTIGAN-O'CONNOR D, NICKOLOFF BJ et al.: T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res. (2001) 61(5):2062–2070.
  • TANAKA F, YAMAGUCHI H, OHTA M et al.: Intratumoral injection of dendritic cells after treatment of anticancer drugs induces tumor-specific antitumor effect in vivo. Int. J. Cancer (2002)101(3):265–269.
  • TANAKA F, HASHIMOTO W, ROBBINS PD, LOTZE MT, TAHARA H: Therapeutic and specific antitumor immunity induced by co-administration of immature dendritic cells and adenoviral vector expressing biologically active IL-18. Gene Ther. (2002) 9(21):1480–1486.
  • LEE JM, MAHTABIFARD A, YAIVIADA R, CRYSTAL RG, KORST RJ: Adenovirus vector-mediated overexpression of a truncated form of the p65 nuclear factor kappa B cDNA in dendritic cells enhances their function resulting in immune-mediated suppression of preexisting murine tumors. Clin. Cancer Res. (2002) 8(11):3561–3569.
  • YAMANAKA R, TSUCHIYA N, YAJIMA N et al.: Induction of an antitumor immunological response by an intratumoral injection of dendritic cells pulsed with genetically engineered Semliki Forest virus to produce interleukin-18 combined with the systemic administration of interleukin-12. J. Neurosurg. (2003) 99(4):746–753.
  • LIU Y, SAXENA A, ZHENG C, CARLSEN S, XIANG J: Combined alpha tumor necrosis factor gene therapy and engineered dendritic cell vaccine in combating well-established tumors. J. Gene Med. (2004) 6(8):857–868.
  • OKAMOTO M, FURUICHI S, NISHIOKA Yet al.: Expression of toll-like receptor 4 on dendritic cells is significant for anticancer effect of dendritic cell-based immunotherapy in combination with an active component of OK-432, a streptococcal preparation. Cancer Res. (2004) 64(15):5461–5470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.