21
Views
3
CrossRef citations to date
0
Altmetric
Review

Individualised cancer therapeutics: dream or reality? Therapeutics construction

, &
Pages 1427-1441 | Published online: 30 Nov 2005

Bibliography

  • PAPIN JA, HUNTER T, PALSSON BO et al.: Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. MoL Cell. Biol. (2005) 6:99–111.
  • PETRICOIN EF, ZOON KC, KOHN EC et al.: Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov. (2002) 1:683–695.
  • WILLINGHAM AT, DEVERAUX QL, HAMPTON GM et al.: RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene (2004) 23:8392–8400.
  • PAROO Z, COREY DR: Challenges for RNAi in vivo. Trends BiotechnoL (2004) 22:390–394.
  • BASS BL: RNA interference. The short answer. Nature (2001) 411:428–429.
  • •Review of siRNA activity.
  • AOKI Y, CIOCA DP, OIDAIRA H et al.: RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin. Exp. Pharmacol. PhysioL (2003) 30:96–102.
  • COMA S, NOE V, LAVARINO C et ell.: Use of siRNAs and antisense oligonucleotides against survivin RNA to inhibit steps leading to tumor angiogenesis. Oligonucleotides (2004) 14:100–113.
  • MIYAGISHI M, HAYASHI M, TAIRA K: Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev. (2003) 13:1–7.
  • ELBASHIR SM, HARBORTH J, LENDECKEL Wet al.: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature (2001) 411:494–498.
  • •Identification of siRNA structural components.
  • ICHIM TE, LI M, QIAN H et aL: RNA interference: a potent tool for gene-specific therapeutics. Am. J. Transplant. (2004) 4:1227–1236.
  • LIEBERMAN J, SONG E, LEE SK et al.:Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends MoL Med. (2003) 9:397–403.
  • CUNNINGHAM CC, HOLMLUND JT, GEARY RS et al.: A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer (2001) 92:1265–1271.
  • CUNNINGHAM CC, HOLMLUND JT, SCHILLER JH et al.: A Phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. (2000) 6:1626–1631.
  • NEMUNAITIS J, HOLMLUND JT, KRAYNAK M et al.: Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J. Clin. OncoL (1999) 17:3586–3595.
  • SUZUKI T, ANDEREGG B, OHKAWA T et al.: Adenovirus-mediated ribozyme targeting of HER-2/neu inhibits in vivo growth of breast cancer cells. Gene Ther. (2000) 7:241–248.
  • TONG AW, ZHANG YA, CUNNINGHAM C et al.: Potential clinical application of antioncogene ribozymes for human lung cancer. Clin. Lung Cancer (2001) 2:220–226.
  • KARIKO K, BHUYAN P, CAPODICI J et al.: Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. (2004) 172:6545–6549.
  • HILL JA, ICHIM TE, KUSZNIERUK KPet al.: Immune modulation by silencing IL-12 production in dendritic cells using small interfering RNA. J. ImmunoL (2003) 171:691–696.
  • LIM LP, GLASNER ME, YEKTA S et al.:Vertebrate microRNA genes. Science (2003) 299:1540.
  • •Discussion of miRNA.
  • MOSS EG: Silencing unhealthy alleles naturally. Trends BiotechnoL (2003) 21:185–187.
  • NOVINA CD, SHARP PA: The RNAi revolution. Nature (2004) 430:161–164.
  • CALIN GA, SEVIGNANI C, DUMITRU CD et aL: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. NatL Acad. Sci. USA (2004) 101:2999–3004.
  • REYNOLDS A. LEAKE D, BOESE Q et al.: Rational siRNA design for RNA interference. Nat. BiotechnoL (2004) 22:326–330.
  • KIM DH, BEHLKE MA, ROSE SD et al.:Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. BiotechnoL (2005) 23:222–226.
  • MCCAFFREY AP, MEUSE L, PHAM TT et al.: RNA interference in adult mice. Nature (2002) 418:38–39.
  • SIOUD M, SORENSEN DR: Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. (2003) 312:1220–1225.
  • •Liposomal siRNA delivery.
  • SORENSEN DR, LEIRDAL M, SIOUD M: Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Md. Bid. (2003) 327:761–766.
  • TAN Y, ZHANG JS, HUANG L: Codelivery of NF-lcappaB decoy-related oligodeoxynucleotide improves LPD-mediated systemic gene transfer. MoL Ther. (2002) 6:804–812.
  • CAO X, DANIEL J, OZVARAN M et al.: Bc1-XL silencing in thoracic malignancies using short interfering RNA (siRNA). (abstract). Cancer Gene Ther. (2005) (In Press).
  • XIA H, MAO Q, PAULSON HL et al.: siRNA-mediated gene silencing in vitro and in vivo. Nat. BiotechnoL (2002) 20:1006–1010.
  • ZHANG Y, ZHANG YF, BRYANT J et ell.: Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. (2004) 10:3667–3677.
  • BARTON GM, MEDZHITOV R: Retroviral delivery of small interfering RNA into primary cells. Proc. NatL Acad. Sci. USA (2002) 99:14943–14945.
  • LEE MT, COBURN GA, MCCLURE MO et al.: Inhibition of human immunodeficiency virus Type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J. ViroL (2003) 77:11964–11972.
  • QIN XF, AN DS, CHEN IS et al.: Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. NatL Acad. Sci. USA (2003) 100:183–188.
  • TISCORNIA G, SINGER O, IKAWA M et al.: A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. NatL Acad. Sci. USA (2003) 100:1844–1848.
  • LIN J, LIN E, NEMUNAITIS J: Bacteria in the treatment of cancer. Curr. Opin. MoL Ther. (2004) 6:629–639.
  • NEMUNAITIS J, SWISHER G, TIMMONS T et al.: Update Best of the JCO-2000. Adenovirus-mediated p53 gene transfer in sequence with Cisplatin to tumors of patients with non-small cell lung cancer. J. Clin. OncoL Classic Papers and Current Comments (2001) 6:123–138.
  • NEMUNAITIS J, SWISHER SG, TIMMONS T et al.: Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J. Clin. OncoL (2000) 18:609–622.
  • SWISHER SG, ROTH JA, NEMUNAITIS J et aL: Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl. Cancer Inst. (1999) 91:763–771.
  • WEILL D, MACK M, ROTH J et ell.: Adenoviral-mediated p53 gene transfer to non-small cell lung cancer through endobronchial injection. Chest (2000) 118:966–970.
  • LIN E, NEMUNAITIS J: Oncolytic viraltherapies. Cancer Gene Ther. (2004) 11:643–664.
  • MARTUZA RL, MALICK A. MARKERT JM et aL: Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science (1991) 252:854–856.
  • BISCHOFF JR, KIRN DH, WILLIAMS A et aL: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science (1996) 274:373–376.
  • MOSS B: Fields' Virology. Fields N, Knipe DM, Howley PM (Eds), Lippincott-Raven Publishers, Philadelphia, PA, USA (1996).
  • O'SHEA CC: DNA tumor viruses - the spies who lyse us. Curr. Opin. Genet. Dev. (2005) 15:18–26.
  • KHURI FR, NEMUNAITIS J, GANLY I et al.: a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. (2000) 6:879–885.
  • •Description of clinical activity of ONYX-015 in head and neck cancer patients.
  • NEMUNAITIS J, CUNNINGHAM C, BUCHANAN A et al.: Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther. (2001) 8:746–759.
  • NEMUNAITIS J, CUNNINGHAM C, TONG AW et al.: Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther. (2003) 10:341–352.
  • RIES S, KORN WM: ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br. J. Cancer (2002) 86:5–11.
  • HERNANDEZ-ALCOCEBA R, PIHALJA M, QIAN D et aL: New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum. Gene Ther. (2002) 13:1737–1750.
  • FUEYO J, ALEMANY R, GOMEZ-MANZANO C et al.: Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J. Natl. Cancer Inst. (2003) 95:652–660.
  • JAKUBCZAK JL, RYAN P, GORZIGLIA M et al.: An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on ElA, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. (2003) 63:1490–1499.
  • JOHNSON L, SHEN A, BOYLE Let al.: Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell (2002) 1:325–337.
  • SHEN Y, NEMUNAITIS J: Fighting cancer with vaccinia virus: teaching new tricks to an old dog. MoL Ther. (2005) 11:180–195.
  • KIRN D, MARTUZA RU, ZWIEBEL J:Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med. (2001) 7:781–787.
  • TOTH K, DJEHA H, YING B et al.: Anoncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling. Cancer Res. (2004) 64:3638–3644.
  • TONG AW, ZHANG Y, NEMUNAITIS J: Small interfering RNA for experimental cancer therapy. Curr. Opin. MoL Ther. (2005) 7:114–124.
  • ••Review of siRNA in cancer therapy.
  • ZHAN J, WANG W, GAO Yet aL: Tumor-specific intravenous gene delivery using conditionally replicating adenovirus. Cancer Gene Ther. (2003) 10:S055.
  • KOBAYASHI N, MATSUI Y, KAWASE A et al.: Vector-based in vivo RNA interference: dose- and time-dependent suppression of transgene expression. PharmacoL Exp. Ther. (2004) 308:688–693.
  • CARETTE JE, OVERMEER RM, SCHAGEN FH et al.: Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res. (2004) 64:2663–2667.
  • YANG D, BUCHHOLZ F, HUANG Z et al.: Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. NatL Acad. Sci. USA (2002) 99:9942–9947.
  • KAWASAKI H, SUYAMA E, IYO M et al.:siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. (2003) 31:981–987.
  • LAKKA SS, GONDI CS, YANAIVIANDRA N et al.: Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene (2004) 23:4681–4689.
  • BAUZON M, CASTRO D, KARR M et al.: Multigene expression from a replicating adenovirus using native viral promoters. Mo/. Ther. (2003) 7:526–534.
  • MERCHLINSKY M, MOSS B: Introduction of foreign DNA into the vaccinia virus genome by in vitro ligation: recombination-independent selectable cloning vectors. Virology (1992) 190:522–526.
  • SMITH GL, MOSS B: Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene (1983) 25:21–28.
  • SMITH GL, SYMONS JA, KHANNA Aet al.: Vaccinia virus immune evasion.Immunol. Rev. (1997) 159:137–154.
  • SHEN Y, NEMUNAITIS J: Fighting cancer with vaccinia virus: teaching new tricks to an old dog. Mol. Ther. (2005) 11:180–195.
  • MASTRANGELO MJ, MAGUIRE HC JR, EISENLOHR LC et al.: Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. (1999) 6:409–422.
  • CHATTERJEE SK, QIN H, MANNA S et al.: Recombinant vaccinia virus expressing cytokine GM-CSF as tumor vaccine. Anticancer Res. (1999) 19:2869–2873.
  • DRANOFF G, JAFFEE E, LAZENBY Aet al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. NatL Acad. Sci. USA (1993) 90:3539–3543.
  • WADHWA R, KAUL SC, MIYAGISHI M et al.: Vectors for RNA interference. Curr. Opin. MoL Ther. (2004) 6:367–372.
  • CARROLL MW, OVERWIJK WW, SURMAN DR et al.: Construction and characterization of a triple-recombinant vaccinia virus encoding B7-1, interleukin 12, and a model tumor antigen. NatL Cancer Inst. (1998) 90:1881–1887.
  • HODGE JW, SABZEVARI H, YAFAL AGet al.: A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res. (1999) 59:5800–5807.
  • ROTHENBERG ML, CARBONE DP, JOHNSON DH: Improving the evaluation of new cancer treatments: challenges and opportunities. Nat. Rev. Cancer (2003) 3:303–309.
  • SENZER N, SHEN Y, NEMUNAITIS J: Individualized cancer therapeutics. Dream or reality? Target identification. Expert Opin. Ther. Targets (2005) (In Press).
  • SIMONS JW, JAFFEE EM, WEBER CE et al.: Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. (1997) 57:1537–1546.
  • CHANG AE, LI Q, BISHOP DK et al.: Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte-macrophage colony-stimulating factor. Hum. Gene The,: (2000) 11:839–850.
  • SOIFFER R, LYNCH T, MIHM M et aL: Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. NatL Acad. Sci. USA (1998) 95:13141–13146.
  • JAFFEE EM, HRUBAN RH, BIEDRZYCKI B et al.: Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a Phase I trial of safety and immune activation. J. Clin. OncoL (2001) 19:145–156.
  • SIMONS JW, MIKHAK B, CHANG JF et al.: Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. (1999) 59:5160–5168.
  • SALGIA R, LYNCH T, SKARIN A et aL: Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. OncoL (2003) 21:624–630.
  • KUSUMOTO M, UMEDA S, IKUBO A et al.: Phase I clinical trial of irradiated autologous melanoma cells adenovirally transduced with human GM-CSF gene. Cancer ImmunoL Immunother. (2001) 50:373–381.
  • HU J, MCNEISH I, SHORROCK Get aL:A Phase I clinical trial with OncoVEXGMCSF. Mo/. Ther. (2003) 7:S447.
  • SOIFFER R, HODI FS, HALUSKA F et al.: Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. OncoL (2003) 21:3343–3350.
  • SIMONS J, NELSON W, NEMUNAITIS Jet al.: Phase II trials of GMCSF gene transduced prostate cancer. Proc. Am. Soc. Clin. Oncol. (2002) 22:172.
  • SIMONS J, HIGARO C, CORMAN J et aL: A Phase I/II study of high dose allogeneic GMCSF gene transduced prostate cancer cell line vaccine in patients with metastatic hormone-refractory prostate cancer. Proc. Am. Soc. Clin. OncoL (2003) 22:166.
  • NEMUNAITIS J, STERMAN D, JABLONS D et al.: Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J. NatL Cancer Inst. (2004) 96:326–331.
  • •Description of activity of gene-based vaccine GVAX in non-small cell lung cancer.
  • TANI K, AZUMA M, NAKAZAKI Yet aL: Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan: clinical and immunological findings. MoL The,: (2004) 10:799–816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.