43
Views
10
CrossRef citations to date
0
Altmetric
Review

Activation of antigen-presenting cells by DNA delivery vectors

&
Pages 1019-1028 | Published online: 24 Nov 2005

Bibliography

  • STEINMAN RM: The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol (1991) 9:271–296.
  • LIU YJ, KADOWAKI N, RISSOAN MC, SOUMELIS V: T cell activation and polarization by DC1 and DC2. Curr. Top. MicrobioL Immunol (2000) 251:149–159.
  • LIU M, ACRES B, BALLOUL JM et al.: Gene-based vaccines and immunotherapeutics. Proc. Natl. Acad. Sci. USA (2004) 101\(Suppl. 2):14567–14571.
  • KRISHNAN L, DENNIS SPROTT G; INSTITUTE FOR BIOLOGICAL SCIENCES, NATIONAL RESEARCH COUNCIL OF CANADA: Archaeosomes as self-adjuvanting delivery systems for cancer vaccines. J. Drug Target. (2003) 11(8-14515–524.
  • BANCHEREAU J, PALUCKA K, DHODPKAR M et al.: Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. (2001) 61(17):6451–6458.
  • BUTTERFIELD LH, RIBAS A, DISSETTE VB et al.: Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin. Cancer Res. (2003) 9(3):998–1008.
  • THURNER B, HAENDLE I, RODER C et al.: Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. (1999) 190(11):1669–1678.
  • NESTLE FO, ALIJAGIC S, GILLIET M et al.: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. (1998) 4(3):328–332.
  • LAPOINTE R, ROYAL RE, REEVES ME et al.: Retrovirally transduced human dendritic cells can generate T cells recognizing multiple MHC class I and class II epitopes from the melanoma antigen glycoprotein 100.1 Immunol. (2001) 167(8):4758–4764.
  • BUTTERFIELD LH, JILANI SM, CHAKRABORTY NG et al: Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. j Immunol. (1998) 161(10):5607–5613.
  • BUTTERFIELD LH, MENG WS, KOH A et al: T cell responses to HLA-A*0201-restricted peptides derived from human alpha fetoprotein. j Immunol (2001) 166(8):5300–5308.
  • PEREZ-DIEZ A, BUTTERFIELD LH, LI Let al.: Generation of CD8+ and CD4+ T cell responses to dendritic cells genetically engineered to express the MART-1/Melan-A gene. Cancer Res. (1998) 58(23):5305–5309.
  • ARTHUR JF, BUTTERFIELD LH, ROTH MD et al.: A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther. (1997) 4(1):17–25.
  • RIBAS A, BUTTERFIELD LH, MCBRIDE WH et al.: Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res. (1997) 57(14):2865–2869.
  • BROSSART P, GOLDRATH AW, BUTZ EA, MARTIN S, BEVAN MJ: Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J. Immunol (1997) 158(7):3270–3276.
  • WAN Y, BRAMSON J, CARTER R, GRAHAM F, GAULDIE J: Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination. Hum. Gene Ther. (1997) 8(11):1355–1363.
  • SONG W, KONG HL, CARPENTER H et al.: Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J. Exp. Med. (1997) 186(8):1247–1256.
  • WICKHAM TJ, MATHIAS P, CHERESH DA, NEMEROW GR: Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell (1993) 73(2):309–319.
  • BERGELSON JM, CUNNINGHAM JA, DROGUETT G et al.: Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science (1997) 275(5304):1320–1323.
  • BERGELSON JM, KRITHIVAS A, CELI Let al.: The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. j Wrol. (1998) 72(1):415–419.
  • RUSSELL WC: Update on adenovirus and its vectors.1 Gen. Wrol. (2000) 81\(Pt 11):2573–2604.
  • GAGGAR A, SHAYAKHMETOV DM, LIEBER A: CD46 is a cellular receptor for group B adenoviruses. Nat. Med. (2003) 9(11):1408–1412.
  • SHORT JJ, PEREBOEV AV, KAWAKAMI Yet al.: Adenovirus serotype 3 utilizes CD80 (B7.1) and CD86 (B7.2) as cellular attachment receptors. Virology (2004) 322(2):349–359.
  • MEHROTRA S, CHHABRA A. CHAKRABORTY A et al: Antigen presentation by MART-1 adenovirus-transduced interleukin-10-polarized human monocyte-derived dendritic cells. Immunology (2004) 113(4):472–481.
  • DIETZ AB, VUK-PAVLOVIC S: High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood (1998) 91(2):392–398.
  • DI NICOLA M, SIENA S, BREGNI M et al.: Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors. Cancer Gene Ther. (1998) 5(6):350–356.
  • RANIERI E, HERR W, GAMBOTTO A et al.: Dendritic cells transduced with an adenovirus vector encoding Epstein-Barr virus latent membrane protein 2B: a new modality for vaccination./ Wrol. (1999) 73(12):10416–10425.
  • ROTH MD, CHENG Q, HARUI A et al: Helper-dependent adenoviral vectors efficiently express transgenes in human dendritic cells but still stimulate antiviral immune responses. J. Immunol (2002) 169(8):4651–4656.
  • ZHONG L, GRANELLI-PIPERNO A, CHOI Y, STEINMAN RM: Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur. J. Immunol (1999) 29(3):964–972.
  • TILLMAN BW, DE GRUIJL TD, LUYKX-DE BAKKER SA et al: Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J. Immunol (1999) 162(11):6378–6383.
  • LINETTE GP, SHANKARA S, LONGERICH S et al.: In vitro priming with adenovirus/gp100 antigen-transduced dendritic cells reveals the epitope specificity of HLA-A*0201-restricted CD8+ T cells in patients with melanoma. J. ImmunoL (2000) 164(6):3402–3412.
  • YOSHIMURA S, BONDESON J, FOXWELL BM, BRENNAN FM, FELDMANN M: Effective antigen presentation by dendritic cells is NF-kappaB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int. ImmunoL (2001) 13(5):675–683.
  • JONULEIT H, TOTING T, STEITZ J et al.: Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Ther. (2000) 7(3):249–254.
  • KIRK CJ, MULE JJ: Gene-modified dendritic cells for use in tumor vaccines. Hum. Gene Ther. (2000) 11(6):797–806.
  • TAN PH, BEUTELSPACHER SC, XUE SA et al.: Modulation of human dendritic cell function following transduction with viral vectors; implications for gene therapy. Blood (2005) 105(10):3824–3832.
  • SCHUMACHER L, RIBAS A, DISSETTE VB et al.: Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J. Immunother. (2004) 27(3):191–200.
  • PHILPOTT NJ, NOCIARI M, ELKON KB, FALCK-PEDERSEN E: Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proc. NatL Acad. Sci. USA (2004) 101(16):6200–6205.
  • RIBAS A, BUTTERFIELD LH, GLASPY JA, ECONOMOU JS: Current developments in cancer vaccines and cellular immunotherapy. j Clin. OncoL (2003) 21(12):2415–2432.
  • RIBAS A, BUTTERFIELD LH, GLASPY JA, ECONOMOU JS: Cancer immunotherapy using gene-modified dendritic cells. Curr. Gene Ther. (2002) 2002(2):57–78.
  • ENGELMAYER J, LARSSON M, SUBKLEWE M et al.: Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J. ImmunoL (1999) 163(12):6762–6768.
  • BRONTE V, CARROLL MW, GOLETZ TJ et al.: Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc. NatL Acad. Sci. USA (1997) 94(7):3183–3188.
  • PRABAKARAN I, MENON C, XU S et al.: Mature CD83(+) dendritic cells infected with recombinant gp100 vaccinia virus stimulate potent antimelanoma T cells. Ann. Surg. OncoL (2002) 9(4):411–418.
  • DRILLIEN R, SPEHNER D, HANAU D: Modified vaccinia virus Ankara induces moderate activation of human dendritic cells. 1 Gen. ViroL (2004) 85\(Pt 8):2167–2175.
  • BEHBOUDI S, MOORE A. GILBERT SC, NICOLL CL, HILL AV: Dendritic cells infected by recombinant modified vaccinia virus Ankara retain immunogenicity in vivo despite in vitro dysfunction. Vaccine (2004) 22 (31-32):4326–4331.
  • BEHBOUDI S, MOORE A, HILL AV: Splenic dendritic cell subsets prime and boost CD8 T cells and are involved in the generation of effector CD8 T cells. Cell. ImmunoL (2004) 228(1):15–19.
  • TRAKATELLI M, TOUNGOUZ M, LAMBERMONT M et al.: Immune characterization of clinical grade-dendritic cells generated from cancer patients and genetically modified by an ALVAC vector carrying MAGE minigenes. Cancer Gene Ther. (2005) 12(0:552–559.
  • POLLARA G, SPEIDEL K, SAIVIADY Let al.: Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J. Infra. Dis. (2003) 187(2) :165–178.
  • SALIO M, CELLA M, SUTER M, LANZAVECCHIA A: Inhibition of dendritic cell maturation by herpes simplex virus. Bur. j ImmunoL (1999) 29(10):3245–3253.
  • KRUSE M, ROSORIUS O, KRATZER F et al.: Mature dendritic cells infected with herpes simplex virus Type 1 exhibit inhibited T-cell stimulatory capacity. J. ViroL (2000) 74(15):7127–7136.
  • MIKLOSKA Z, BOSNJAK L, CUNNINGHAM AL: Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus Type 1.1 ViroL (2001) 75(13):5958–5964.
  • GORANTLA S, SANTOS K, MEYER V et al.: Human dendritic cells transduced with herpes simplex virus amplicons encoding human immunodeficiency virus Type 1 (HIV-1) gp120 elicit adaptive immune responses from human cells engrafted into NOD/SCID mice and confer partial protection against HIV-1 challenge. Wrol. (2005) 79(4):2124–2132.
  • WILLIS RA, BOWERS WJ, TURNER MJ et al.: Dendritic cells transduced with HSV-1 amplicons expressing prostate-specific antigen generate antitumor immunity in mice. Hum. Gene Ther. (2001) 12(15):1867–1879.
  • AICHER A, WESTERMANN J, CAYEUX S et al.: Successful retroviral mediated transduction of a reporter gene in human dendritic cells: feasibility of therapy with gene-modified antigen presenting cells. Exp. HematoL (1997) 25(1):39–44.
  • ARDESHNA KM, PIZZEY AR, THOMAS NS et al.: Monocyte-derived dendritic cells do not proliferate and are not susceptible to retroviral transduction. Br. J. HaematoL (2000) 108(4):817–824.
  • SZABOLCS P, GALLARDO HF, CIOCON DH, SADELAIN M, YOUNG JW: Retrovirally transduced human dendritic cells express a normal phenotype and potent T-cell stimulatory capacity. Blood (1997) 90(6):2160–2167.
  • YUAN J, LATOUCHE JB, REAGAN JL et al.: Langerhans cells derived from genetically modified human CD34+ hemopoietic progenitors are more potent than peptide-pulsed Langerhans cells for inducing antigen-specific CD8+ cytolytic T lymphocyte responses. J. ImmunoL (2005) 174(2):758–766.
  • BURZYN D, RASSA JC, KIM D et aL: Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J. ViroL (2004) 78(2) : 576–584.
  • CHINNASAMY N, CHINNASAMY D, TOSO JF et al.: Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus Type 1-based lentiviral vectors. Hum. Gene Ther. (2000) 11(13):1901–1909.
  • GRUBER A, KAN-MITCHELL J, KUHEN KL, MUKAI T, WONG-STAAL F: Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood (2000) 96(4):1327–1333.
  • SCHROERS R, SINHA I, SEGALL H et al.: Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mot Ther. (2000) 1(2):171–179.
  • GRANELLI-PIPERNO A, GOLEBIOWSKA A, TRUMPFHELLER C, SIEGAL FP, STEINMAN RM: HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc. Nail. Acad. Sci. USA (2004) 101(20):7669–7674.
  • DYALL J, LATOUCHE JB, SCHNELL S, SADELAIN M: Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood (2001) 97(1):114–121.
  • ROUAS R, UCH R, CLEUTER Yet aL: Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther. (2002) 9(9):715–724.
  • BRECKPOT K, DULLAERS M, BONEHILL A et al: Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J. Gene Med. (2003) 5(8):654–667.
  • ARRIGHI JF, PION M, GARCIA E et al: DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J. Exp. Med. (2004) 200(10):1279–1288.
  • WILFLINGSEDER D, MULLAUER B, SCHRAMEK H et al: HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways./ Immunol (2004) 173(12):7497–7505.
  • LIU Y, SANTIN AD, MANE M et al: Transduction and utility of the granulocyte-macrophage colony-stimulating factor gene into monocytes and dendritic cells by adeno-associated virus. J. Interferon Cytokine Res. (2000) 20(1):21–30.
  • PONNAZHAGAN S, MAHENDRA G, CURIEL DT, SHAW DR: Adeno-associated virus Type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. j Wrol. (2001) 75(19):9493–9501.
  • CHIRIVA-INTERNATI M, LIU Y, WEIDANZ JA et al: Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood (2003) 102(9):3100–3107.
  • GARDNER JP, FROLOV I, PERRI S et al: Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J. Virol (2000) (24):11849–11857.
  • HUCKRIEDE A. BUNGENER L, HOLTROP M et al: Induction of cytotoxic T lymphocyte activity by immunization with recombinant Semliki Forest virus: indications for cross-priming. Vaccine (2004) 22(9-10):1104–1113.
  • SCHULZ O, DIEBOLD SS, CHEN M et al: Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature (2005) 433(7028):887–892.
  • MACDONALD GH, JOHNSTON RE: Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J. Virol (2000) 74(2):914–922.
  • NIIDOME T, HUANG L: Gene therapy progress and prospects: nonviral vectors. Gene Ther. (2002) 9(24):1647–1652.
  • KEMPF M, MANDAL B, JILEK S et al: Improved stimulation of human dendritic cells by receptor engagement with surface-modified microparticles. J. Drug Target. (2003) 11(1):11–18.
  • ADA G, RAMSHAW I: DNA vaccination. Expert Opin. Emerg-. Drugs (2003) 8(1):27–35.
  • O'HAGAN DT, SINGH M, ULMER JB: Microparticles for the delivery of DNA vaccines. Immunol Rev. (2004) 199:191–200.
  • SINGH M, KAZZAZ J, UGOZZOLI M, CHESKO J, O'HAGAN DT: Charged polylactide co-glycolide microparticles as antigen delivery systems. Expert Opin. Biol. Ther. (2004) 4(4):483–491.
  • CHAMARTHY SP, JIA L, KOVACS JR et al: Gene delivery to dendritic cells facilitated by a tumor necrosis factor alpha-competing peptide. MoL Immunol (2004) 41(8):741–749.
  • KOVACS JR, ZHENG Y, SHEN H, MENG WS: Polymeric microspheres as stabilizing anchors for oligonucleotide delivery to dendritic cells. Biomateriais (2005) (In Press).
  • LUTSIAK ME, ROBINSON DR, COESTER C, KWON GS, SAMUEL J: Analysis of poly(D,L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm. Res. (2002) 19(10):1480–1487.
  • NEWMAN KD, ELAIVIANCHILI P, KWON GS, SAMUEL J: Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mater. Res. (2002) 60(3):480–486.
  • WALTER E, DREHER D, KOK M et aL:Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J. Control. Release (2001) 76(1-2):149–168.
  • THIELE L, ROTHEN-RUTISHAUSER B, JILEK S et al: Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release (2001) 76(1-2):59–71.
  • JOHANSEN P, ESTEVEZ F, ZURBRIGGEN R et al.: Towards clinical testing of a single-administration tetanus vaccine based on PIA/PLGA microspheres. Vaccine (2000) 19 (9-10) :1047–1054.
  • MEN Y, TAMBER H, AUDRAN R, GANDER B, CORRADIN G: Induction of a cytotoxic T lymphocyte response by immunization with a malaria specific CTL peptide entrapped in biodegradable polymer microspheres. Vaccine (1997) 15(12-13):1405–1412.
  • MEN Y, THOMASIN C, MERKLE HP, GANDER B, CORRADIN G: A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine (1995) 13(7):683–689.
  • SINGH M, BRIONES M, OTT G, O'HAGAN D: Cationic microparticles: a potent delivery system for DNA vaccines. Proc .Natl. Acad. Sci. USA (2000) 97(2):811–816.
  • WANG J, ZHANG Q: Uptake of cyclosporine A loaded colloidal drug carriers by mouse peritoneal macrophages in vitro. Acta Pharmacol Sin. (2001) 22(1):57–61.
  • DENIS-MIZE KS, DUPUIS M, MACKICHAN ML et al: Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther. (2000) 7(24):2105–2112.
  • O'HAGAN DT, SINGH M: Microparticles as vaccine adjuvants and delivery systems. Expert Rev. Vaccines (2003) 2(2):269–283.
  • WAECKERLE-MEN Y, SCANDELLA E, UETZ-VON ALLMEN E et al.: Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy. Immunol. Methods (2004) 287(1–2):109–124.
  • SUN H, POLLOCK KG, BREWER JM: Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine (2003) 21(9-10):849–855.
  • JILEK S, ULRICH M, MERKLE HP, WALTER E: Composition and surface charge of DNA-loaded microparticles determine maturation and cytokine secretion in human dendritic cells. Pharm. Res. (2004) 21(7):1240–1247.
  • PRIOR S, GANDER B, BLARER N et aL: In vitro phagocytosis and monocyte-macrophage activation with poly(lactide) and poly(lactide-co-glycolide) microspheres. Eur. J. Pharm. Sci. (2002) 15(2):197–207.
  • THIELE L, MERKLE HP, WALTER E: Phagocytosis of synthetic particulate vaccine delivery systems to program dendritic cells. Expert Rev. Vaccines (2002) 1(2):215–226.
  • YOSHIDA M, BABENSEE JE: Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. Biomed. Mater. Res. (2004) 71A(1):45–54.
  • HEATH WR, BELZ GT, BEHRENS GM et al.: Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. (2004) 199:9–26.
  • YAN M, PENG J, JABBAR IA et al.: Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells. Virology (2004) 324(2):297–310.
  • BIVAS-BENITA M, OUDSHOORN M, ROMEIJN S et al.: Cationic submicron emulsions for pulmonary DNA immunization. J. Control. Release (2004) 100(1):145–155.
  • LEE RJ, HUANG L: Lipidic vector systems for gene transfer. Crit. Rev. Ther. Drug Carrier Syst. (1997) 14(2):173–206.
  • TAN Y, WHITMORE M, LI S, FREDERIK P, HUANG L: LPD nanoparticles-novel nonviral vector for efficient gene delivery. Methods MoL Med. (2002) 69:73–81.
  • WROBEL I, COLLINS D: Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta (1995) 1235(2):296–304.
  • LEGENDRE JY, SZOKA FC JR: Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm. Res. (1992) 9(10):1235–1242.
  • ZHOU X, HUANG L: DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta (1994) 1189(2):195–203.
  • LEE RJ, HUANG L: Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. (1996) 271(14):8481–8487.
  • NORMAN J, DENHAM W, DENT-JAM D et al.: Liposome-mediated, nonviral gene transfer induces a systemic inflammatory response which can exacerbate pre-existing inflammation. Gene Ther. (2000) 7(16):1425–1430.
  • FILION MC, PHILLIPS NC: Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta (1997) 1329(2):345–356.
  • FILION MC, PHILLIPS NC: Anti-inflammatory activity of cationic lipids. Br. J. PharmacoL (1997) 122(3):551–557.
  • KRISHNAN L, SAD S, PATEL GB, SPROTT GD: Archaeosomes induce long-term CD8+ cytotoxic T cell response to entrapped soluble protein by the exogenous cytosolic pathway, in the absence of CD4+ T cell help. J. Immunol. (2000) 165(9):5177–5185.
  • KRISHNAN L, DICAIRE CJ, PATEL GB, SPROTT GD: Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect. Immun. (2000) 68(1):54–63.
  • KRISHNAN L, SAD S, PATEL GB, SPROTT GD: Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge. Cancer Res. (2003) 63(10):2526–2534.
  • SPROTT GD, DICAIRE CJ, GURNANI K, SAD S, KRISHNAN L: Activation of dendritic cells by liposomes prepared from phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette-Guerin and adjuvant activity in vivo. Infect. Immun. (2004) 72(9):5235–5246.
  • SPROTT GD, DICAIRE CJ, GURNANI K, DESCHATELETS LA, KRISHNAN L: Liposome adjuvants prepared from the total polar lipids of Haloferax vokanfi, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine (2004) 22(17-18):2154–2162.
  • RAMSAY E, HADGRAFT J, BIRCHALL J, GUMBLETON M: Examination of the biophysical interaction between plasmid DNA and the polycations, polylysine and polyornithine, as a basis for their differential gene transfection in vitro. Int. J. Pharm. (2000) 210(1-2):97–107.
  • BOUSSIF O, LEZOUALC'H F, ZANTA MA et al.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. NatL Acad. Sci. USA (1995) 92(10:7297–7301.
  • HAENSLER J, SZOKA FC JR: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. (1993) 4(5):372–379.
  • NIIDOME T, OHMORI N, ICHINOSE A et al.: Binding of cationic alpha-helical peptides to plasmid DNA and their gene transfer abilities into cells. J. Biol. Chem. (1997) 272(24):15307–15312.
  • WI] GY, WI] CH: Receptor-mediated in vitro gene transformation by a soluble DNA carrier system./ Biol. Chem. (1987) 262(10):4429–4432.
  • WAGNER E, COTTEN M, MECHTLER K, KIRLAPPOS H, BIRNSTIEL ML: DNA-binding transferrin conjugates as functional gene-delivery agents: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety. Bioconjug. Chem. (1991) 2(4):226–231.
  • WOLFERT MA, DASH PR, NAZAROVA O et al.: Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. (1999) 10(6):993–1004.
  • TONCHEVA V, WOLFERT MA, DASH PR et al.: Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochim. Biophys. Acta (1998) 1380(3):354–368.
  • CHAMARTHY SP, KOVACS JR, MCCLELLAND E, GATTENS D, MENG WS: A cationic peptide consists of ornithine and histidine repeats augments gene transfer in dendritic cells. Mol. Immunol (2003) 40(8):483–490.
  • KWOH DY, COFFIN CC, LOLLO CP et al.: Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim. Biophys. Acta (1999) 1444(2):171–190.
  • OUPICKY D, HOWARD KA, KONAK C et al.: Steric stabilization of poly-L-Lysine/ DNA complexes by the covalent attachment of semitelechelic poly[N-(2-hydroxypropyl)methacrylamide]. Bioconjug. Chem. (2000) 11 (4) :492–501.
  • IRVINE AS, TRINDER PK, LAUGHTON DL et al.: Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat. Biotechnol (2000) 18(12):1273–1278.
  • HAINES AM, IRVINE AS, MOUNTAIN A et al.: CL22 — a novel cationic peptide for efficient transfection of mammalian cells. Gene Ther. (2001) 8(2):99–110.
  • RAMSAY E, GUMBLETON M: Polylysine and polyornithine gene transfer complexes: a study of complex stability and cellular uptake as a basis for their differential in-vitro transfection efficiency. J. Drug Target. (2002) 10(1):1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.