69
Views
6
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of adult progenitor cells in cardiovascular disease

, , , &
Pages 1153-1165 | Published online: 14 Aug 2007

Bibliography

  • FRANCIS GS, TANG WH: Pathophysiology of congestive heart failure. Rev. Cardiovasc. Med. (2003) 4(Suppl. 2):S14-S20.
  • ASAHARA T, MUROHARA T, SULLIVAN A et al.: Isolation of putative progenitor endothelial cells for angiogenesis. Science (1997) 275(5302):964-967.
  • SAINZ J, AL HAJ ZEN A, CALIGIURI G et al.: Isolation of ‘side population’ progenitor cells from healthy arteries of adult mice. Arterioscler. Thromb. Vasc. Biol. (2006) 26(2):281-286.
  • ZENGIN E, CHALAJOUR F, GEHLING UM et al.: Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development (2006) 133(8):1543-1551.
  • CHOCKALINGAM A, CHALMERS J, LISHENG L et al.: Prevention of cardiovascular diseases in developing countries: agenda for action (statement from a WHO-ISH Meeting in Beijing, October 1999). J. Hypertens. (2000) 18(12):1705-1708.
  • MURRY CE, FIELD LJ, MENASCHE P: Cell-based cardiac repair: reflections at the 10-year point. Circulation (2005) 112(20):3174-3183.
  • THOMPSON RB, EMANI SM, DAVIS BH et al.: Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation (2003) 108(Suppl. 1):II264-II271.
  • MENASCHE P: Skeletal myoblast for cell therapy. Coron. Artery Dis. (2005) 16(2):105-110.
  • WOLLERT KC, MEYER GP, LOTZ J et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet (2004) 364(9429):141-148.
  • CHEN SL, FANG WW, YE F et al.: Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. (2004) 94(1):92-95.
  • JANSSENS S, DUBOIS C, BOGAERT J et al.: Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet (2006) 367(9505):113-121.
  • ASSMUS B, HONOLD J, SCHACHINGER V et al.: Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. (2006) 355(12):1222-1232.
  • SCHACHINGER V, ERBS S, ELSASSER A et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. (2006) 355(12):1210-1221.
  • LUNDE K, SOLHEIM S, AAKHUS S et al.: Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. (2006) 355(12):1199-1209.
  • GARCIA-MARTINEZ V, SCHOENWOLF GC: Primitive-streak origin of the cardiovascular system in avian embryos. Dev. Biol. (1993) 159(2):706-719.
  • HATADA Y, STERN CD: A fate map of the epiblast of the early chick embryo. Development (1994) 120(10):2879-2889.
  • CAI CL, LIANG X, SHI Y et al.: Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell (2003) 5(6):877-889.
  • LAUGWITZ KL, MORETTI A, LAM J et al.: Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature (2005) 433(7026):647-653.
  • BUCKINGHAM M, MEILHAC S, ZAFFRAN S: Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. (2005) 6(11):826-835.
  • MOTOIKE T, MARKHAM DW, ROSSANT J, SATO TN: Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis (2003) 35(3):153-159.
  • WU SM, FUJIWARA Y, CIBULSKY SM et al.: Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell (2006) 127(6):1137-1150.
  • KATTMAN SJ, HUBER TL, KELLER GM: Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell (2006) 11(5):723-732.
  • MORETTI A, CARON L, NAKANO A et al.: Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell (2006) 127(6):1151-1165.
  • BELTRAMI AP, BARLUCCHI L, TORELLA D et al.: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell (2003) 114(6):763-776.
  • URBANEK K, TORELLA D, SHEIKH F et al.: Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl. Acad. Sci. USA (2005) 102(24):8692-8697.
  • OH H, BRADFUTE SB, GALLARDO TD et al.: Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA (2003) 100(21):12313-12318.
  • MATSUURA K, NAGAI T, NISHIGAKI N et al.: Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem. (2004) 279(12):11384-11391.
  • OYAMA T, NAGAI T, WADA H et al.: Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J. Cell Biol. (2007) 176(3):329-341.
  • MARTIN CM, MEESON AP, ROBERTSON SM et al.: Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. (2004) 265(1):262-275.
  • PFISTER O, MOUQUET F, JAIN M et al.: CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res. (2005) 97(1):52-61.
  • KRAUSE DS, THEISE ND, COLLECTOR MI et al.: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell (2001) 105(3):369-377.
  • GRANT MB, MAY WS, CABALLERO S et al.: Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. (2002) 8(6):607-612.
  • VIEYRA DS, JACKSON KA, GOODELL MA: Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev. (2005) 1(1):65-69.
  • ORLIC D, KAJSTURA J, CHIMENTI S et al.: Bone marrow cells regenerate infarcted myocardium. Nature (2001) 410(6829):701-705.
  • KAJSTURA J, ROTA M, WHANG B et al.: Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. (2005) 96(1):127-137.
  • JACKSON KA, MAJKA SM, WANG H et al.: Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. (2001) 107(11):1395-1402.
  • BALSAM LB, WAGERS AJ, CHRISTENSEN JL et al.: Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature (2004) 428(6983):668-673.
  • MURRY CE, SOONPAA MH, REINECKE H et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature (2004) 428(6983):664-668.
  • JIANG Y, JAHAGIRDAR BN, REINHARDT RL et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature (2002) 418(6893):41-49.
  • D'IPPOLITO G, DIABIRA S, HOWARD GA et al.: Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J. Cell Sci. (2004) 117(Part 14):2971-2981.
  • ANJOS-AFONSO F, BONNET D: Non-hematopoietic/endothelial SSEA-1+ cells defines the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood (2007) 109(3):1298-1306.
  • KUCIA M, RECA R, CAMPBELL FR et al.: A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia (2006) 20(5):857-869.
  • NAYERNIA K, LEE JH, DRUSENHEIMER N et al.: Derivation of male germ cells from bone marrow stem cells. Lab. Invest. (2006) 86(7):654-663.
  • YOON YS, WECKER A, HEYD L et al.: Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest. (2005) 115(2):326-338.
  • KUCIA M, DAWN B, HUNT G et al.: Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ. Res. (2004) 95(12):1191-1199.
  • WOJAKOWSKI W, TENDERA M, MICHALOWSKA A et al.: Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation (2004) 110(20):3213-3220.
  • KUCIA M, WOJAKOWSKI W, RECA R et al.: The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner. Arch. Immunol. Ther. Exp. (Warsz) (2006) 54(2):121-135.
  • RATAJCZAK MZ, ZUBA-SURMA E, KUCIA M et al.: The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia (2006) 20(11):1915-1924.
  • PALLANTE BA, DUIGNAN I, OKIN D et al.: Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ. Res. (2007) 100(1):E1-E11.
  • REYES M, LUND T, LENVIK T et al.: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood (2001) 98(9):2615-2625.
  • ZENG L, RAHRMANN E, HU Q et al.: Multipotent adult progenitor cells from swine bone marrow. Stem Cells (2006) 24(11):2355-2366.
  • MUGURUMA Y, REYES M, NAKAMURA Y et al.: In vivo and in vitro differentiation of myocytes from human bone marrow-derived multipotent progenitor cells. Exp. Hematol. (2003) 31(12):1323-1330.
  • TOLAR J, OSBORN M, BELL S et al.: Real-time in vivo imaging of stem cells following transgenesis by transposition. Mol. Ther. (2005) 12(1):42-48.
  • SCHWARTZ RE, REYES M, KOODIE L et al.: Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. (2002) 109(10):1291-1302.
  • JIANG Y, HENDERSON D, BLACKSTAD M et al.: Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. Natl. Acad. Sci. USA (2003) 100(Suppl. 1):11854-11860.
  • REYES M, DUDEK A, JAHAGIRDAR B et al.: Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest. (2002) 109(3):337-346.
  • ARANGUREN XL, LUTTUN A, CLAVEL C et al.: In vitro and in vivo arterial differentiation of human multipotent adult progenitor cells. Blood (2007) 109(6):2634-2642.
  • ROSS JJ, HONG Z, WILLENBRING B et al.: Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J. Clin. Invest. (2006) 116(12):3139-3149.
  • BREYER A, ESTHARABADI N, OKI M, VERFAILLIE CM: Multipotent adult progenitor cell isolation and culture procedures. Exp. Hematol. (2006) 34(11):1596-1601.
  • SERAFINI M, DYLLA SJ, OKI M et al.: Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J. Exp. Med. (2007) 204(1):129-139.
  • ZHONG TP, CHILDS S, LEU JP, FISHMAN MC: Gridlock signalling pathway fashions the first embryonic artery. Nature (2001) 414(6860):216-220.
  • TORRES-VAZQUEZ J, KAMEI M, WEINSTEIN BM: Molecular distinction between arteries and veins. Cell Tissue Res. (2003) 314(1):43-59.
  • SHAWBER CJ, KITAJEWSKI J: Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays (2004) 26(3):225-234.
  • MOOSMANG S, LENHARDT P, HAIDER N, HOFMANN F, WEGENER JW: Mouse models to study L-type calcium channel function. Pharmacol. Ther. (2005) 106(3):347-355.
  • ROSS JJ, TRANQUILLO RT: ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. (2003) 22(6):477-490.
  • SINHA S, WAMHOFF BR, HOOFNAGLE MH et al.: Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells. Stem Cells (2006) 24(7):1678-1688.
  • TOLAR J, O'SHAUGHNESSY MJ, PANOSKALTSIS-MORTARI A et al.: Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. Blood (2006) 107(10):4182-4188.
  • PELACHO B, SCHWARTZ D, GUTIERREZ M, PROSPER F, VERFAILLIE C: Rodent multipotent adult progenitor cells (MAPC) can commit to a cardiac lineage. Circulation (2005) 112:225.
  • RUBART M, FIELD LJ; CARDIAC REGENERATION: Repopulating the heart. Ann. Rev. Physiol. (2006) 68:29-49.
  • KAMIHATA H, MATSUBARA H, NISHIUE T et al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation (2001) 104(9):1046-1052.
  • KINNAIRD T, STABILE E, BURNETT MS et al.: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. (2004) 94(5):678-685.
  • GALLI D, INNOCENZI A, STASZEWSKY L et al.: Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells. Arterioscler. Thromb. Vasc. Biol. (2005) 25(4):692-697.
  • GNECCHI M, HE H, LIANG OD et al.: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. (2005) 11(4):367-368.
  • GNECCHI M, HE H, NOISEUX N et al.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. (2006) 20(6):661-669.
  • POLA R, LING LE, SILVER M et al.: The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. (2001) 7(6):706-711.
  • UEMURA R, XU M, AHMAD N, ASHRAF M: Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res. (2006) 98(11):1414-1421.
  • JANSSENS S, THEUNISSEN K, BOOGAERTS M, VAN DE WERF F: Bone marrow cell transfer in acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. (2006) 3(Suppl. 1):S69-S72.
  • BARTUNEK J, VANDERHEYDEN M, WIJNS W et al.: Bone-marrow-derived cells for cardiac stem cell therapy: safe or still under scrutiny? Nat. Clin. Pract. Cardiovasc. Med. (2007) 4(Suppl. 1):S100-S105.
  • PELACHO B, NAKAMURA Y, ZHANG J, VERFAILLIE C: Multipotent adult progenitor cell transplantation increases vascularity and improves left ventricular function after myocardial infarction. J. Tissue Eng. Regenerative Med. (2007) 1(1):51-59
  • AGBULUT O, MAZO M, BRESSOLLE C et al.: Can bone marrow-derived multipotent adult progenitor cells regenerate infarcted myocardium? Cardiovasc. Res. (2006) 72(1):175-183.
  • AGBULUT O, COIRAULT C, NIEDERLANDER N et al.: GFP expression in muscle cells impairs actin-myosin interactions: implications for cell therapy. Nat. Methods (2006) 3(5):331.
  • KISSEBERTH WC, BRETTINGEN NT, LOHSE JK, SANDGREN EP: Ubiquitous expression of marker transgenes in mice and rats. Dev. Biol. (1999) 214(1):128-138.
  • ZHANG M, METHOT D, POPPA V et al.: Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell Cardiol. (2001) 33(5):907-921.
  • KOFIDIS T, LEBL DR, MARTINEZ EC et al.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation (2005) 112(9 Suppl.):I173-I177.
  • KUTSCHKA I, CHEN IY, KOFIDIS T et al.: Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation (2006) 114(1 Suppl.):I167-I173.
  • NUSSBAUM J, MINAMI E, LAFLAMME MA et al.: Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. (2007) 21(7):1345-1357.
  • BONNEVIE L, BEL A, SABBAH L et al.: Is xenotransplantation of embryonic stem cells a realistic option? Transplantation (2007) 83(3):333-335.
  • MENARD C, HAGEGE AA, AGBULUT O et al.: Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet (2005) 366(9490):1005-1012.
  • BEHFAR A, PEREZ-TERZIC C, FAUSTINO RS et al.: Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med. (2007) 204(2):405-420.
  • ALVAREZ-DOLADO M, PARDAL R, GARCIA-VERDUGO JM et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature (2003) 425(6961):968-973.
  • NYGREN JM, JOVINGE S, BREITBACH M et al.: Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. (2004) 10(5):494-501.
  • LEE N, THORNE T, LOSORDO DW, YOON YS: Repair of ischemic heart disease with novel bone marrow-derived multipotent stem cells. Cell Cycle (2005) 4(7):861-864.
  • KOCHER AA, SCHUSTER MD, SZABOLCS MJ et al.: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. (2001) 7(4):430-436.
  • DAVANI S, MARANDIN A, MERSIN N et al.: Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation (2003) 108(Suppl. 1):II253-II258.
  • WINITSKY SO, GOPAL TV, HASSANZADEH S et al.: Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol. (2005) 3(4):E87.
  • PLANAT-BENARD V, MENARD C, ANDRE M et al.: Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. (2004) 94(2):223-229.
  • YAMADA Y, WANG XD, YOKOYAMA S, FUKUDA N, TAKAKURA N: Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem. Biophys. Res. Commun. (2006) 342(2):662-670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.