128
Views
7
CrossRef citations to date
0
Altmetric
Review

Genetic modification of T cells for immunotherapy

, MD, , & , MD
Pages 1167-1182 | Published online: 14 Aug 2007

Bibliography

  • KLENERMAN P, HILL A: T cells and viral persistence: lessons from diverse infections. Nat. Immunol. (2005) 6(9):873-879.
  • BLEAKLEY M, RIDDELL SR: Molecules and mechanisms of the graft-versus-leukemia effect. Nat. Rev. Cancer (2004) 4(5):371-380.
  • GALON J, COSTES A, SANCHEZ-CABO F et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (2006) 313:1960-1964.
  • DUNN GP, KOEBEL CM, SCHREIBER RD: Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. (2006) 6(11):836-848.
  • WALTER EA, GREENBERG PD, GILBERT MJ et al.: Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. (1995) 333(16):1038-1044.
  • PEGGS KS, VERFUERTH S, PIZZEY A et al.: Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet (2003) 362:1375-1377.
  • ROONEY CM, SMITH CA, NG CYC et al.: Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet (1995) 345:9-13.
  • LEEN AM, MYERS GD, SILI U et al.: Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat. Med. (2006) 12(10):1160-1166.
  • BOON T, OLD LJ: Cancer tumor antigens. Curr. Opin. Immunol. (1997) 9(5):681-683.
  • DUDLEY ME, WUNDERLICH J, NISHIMURA MI et al.: Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J. Immunother. (2001) 24(4):363-373.
  • YEE C, THOMPSON JA, BYRD D et al.: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred cells. Proc. Natl. Acad. Sci. USA (2002) 99(25):16168-16173.
  • CURIEL TJ, WEI S, DONG H et al.: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. (2003) 9(5):562-567.
  • CURIEL TJ, COUKOS G, ZOU L et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. (2004) 10(9):942-949.
  • SINHA P, CLEMENTS VK, MILLER S, OSTRAND-ROSENBERG S: Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol. Immunother. (2005) 54(11):1137-1142.
  • GROH V, WU J, YEE C, SPIES T: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature (2002) 419:734-738.
  • BRODERICK L, BANKERT RB: Membrane-associated TGF-β1 inhibits human memory T cell signaling in malignant and nonmalignant inflammatory microenvironments. J. Immunol. (2006) 177(5):3082-3088.
  • GAGGAR A, SHAYAKHMETOV DM, LIEBER A: CD46 is a cellular receptor for group B adenoviruses. Nat. Med. (2003) 9(11):1408-1412.
  • SCHROERS R, HILDEBRANDT Y, HASENKAMP J et al.: Gene transfer into human T lymphocytes and natural killer cells by Ad5/F35 chimeric adenoviral vectors. Exp. Hematol. (2004) 32:536-546.
  • SAUCE D, BODINIER M, GARIN M et al.: Retrovirus-mediated gene transfer in primary T lymphocytes impairs their anti-Epstein–Barr virus potential through both culture-dependent and selection process-dependent mechanisms. Blood (2002) 99:1165-1173.
  • FERRAND C, ROBINET E, CONTASSOT E et al.: Retrovirus-mediated gene transfer in primary T lymphocytes: influence of the transduction/selection process and of ex vivo expansion on the T cell receptor β-chain hypervariable region repertoire. Hum. Gene Ther. (2000) 11:1151-1164.
  • LENARDO MJ: Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature (1991) 353:858-861.
  • ROBBINS PB, SKELTON DC, YU X-J et al.: Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc. Natl. Acad. Sci. USA (1998) 95:10182-10187.
  • WANG L, ROBBINS PB, CARBONARO DA, KOHN DB: High-resolution analysis of cytosine methylation in the 5long terminal repeat of retroviral vectors. Hum. Gene Ther. (1998) 9(16):2321-2330.
  • CAVALIERI S, CAZZANIGA S, GEUNA M et al.: Human T lymphocytes transduced by lentiviral vectors in the absence of TCR-activation maintain an intact immune competence. Blood (2003) 102(2):497-505.
  • ZHOU X, CUI Y, HUANG X et al.: Lentivirus-mediated gene transfer and expression in established human tumor antigen-specific cytotoxic T cells and primary unstimulated T cells. Hum. Gene Ther. (2003) 14:1089-1105.
  • LI Z, DÜLLMANN J, SCHIEDLMEIER B et al.: Murine leukemia induced by retroviral gene marking. Science (2002) 296:497.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M, LE DEIST F: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. (2003) 348(3):255-256.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (2003) 302(5644):415-419.
  • GASPAR HB, PARSLEY KL, HOWE S et al.: Gene-therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gamma retroviral vector. Lancet (2004) 364:2181-2187.
  • PORTEUS MH: Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. (2006) 13(2):438-446.
  • JENSEN MC, CLARKE P, TAN G et al.: Human T lymphocyte genetic modification with naked DNA. Mol. Ther. (2000) 1(1):49-55.
  • IVICS Z, HACKETT PB, PLASTERK RH, IZSVÁK Z: Molecular reconstitution of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell (1997) 91:501-510.
  • LUO G, IVICS Z, IZSVÁK Z, BRADLEY A: Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA (1998) 95:10769-10773.
  • HUANG X, WILBER AC, BAO L et al.: Stable gene transfer and expression in human primary T-cells by the Sleeping Beauty transposon system. Blood (2006) 107(2):483-491.
  • DEMBIC Z, HAAS W, WEISS S et al.: Transfer of specificity by murine α and β T-cell receptor genes. Nature (1986) 320:232-238.
  • CLAY TM, CUSTER MC, SACHS J et al.: Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J. Immunol. (1999) 163:507-513.
  • STANISLAWSKI T, VOSS R-H, LOTZ C et al.: Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. (2001) 2(10):962-970.
  • MORGAN RA, DUDLEY ME, YU YYL et al.: High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J. Immunol. (2003) 171:3287-3295.
  • KESSELS HWHG, WOLKERS MC, VAN DEN BOOM MD, VAN DER VALK MA, SCHUMACHER TNM: Immunotherapy through TCR gene transfer. Nat. Immunol. (2001) 2(10):957-961.
  • MORGAN RA, DUDLEY ME, WUNDERLICH JR et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science (2006) 314:126-129.
  • ZHAO Y, ZHENG Z, ROBBINS PF et al.: Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J. Immunol. (2005) 174:4415-4423.
  • MUTIS T, BLOKLAND E, KESTER M, SCHRAMA E, GOULMY E: Generation of minor histocompatibility antigen HA-1-specific cytotoxic T cells restricted by nonself HLA molecules: a potential strategy to treat relapsed leukemia after HLA-mismatched stem cell transplantation. Blood (2002) 100(2):547-552.
  • XUE S-A, GAO L, HART D et al.: Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood (2005) 106(9):3062-3067.
  • COHEN CJ, ZHAO Y, ZHENG Z, ROSENBERG SA, MORGAN RA: Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. (2006) 66(17):8878-8886.
  • KUBALL J, DOSSETT ML, WOLFL M et al.: Facilitating matched pairing and expression of TCR-chains introduced into human T-cells. Blood (2007) 109(6):2331-2338.
  • RICHMAN SA, HEALAN SJ, WEBER KS et al.: Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng. Des. Sel. (2006) 19(6):255-264.
  • PASCHEN A, MÉNDEZ RM, JIMEMEZ P et al.: Complete loss of HLA class I antigen expression on melanoma cells: a result of successive mutational events. Int. J. Cancer (2003) 130:759-767.
  • YANG L, BALTIMORE D: Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc. Natl. Acad. Sci. USA (2005) 102(12):4518-4523.
  • ESHHAR Z, WAKS T, GROSS G, SCHINDLER DG: Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA (1993) 90:720-724.
  • ROBERTS MR, QIN L, ZHANG D et al.: Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood (1994) 84(9):2878-2889.
  • SADELAIN M, RIVIÈRE I, BRENTJENS RJ: Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer (2003) 3:35-45.
  • BRENTJENS RJ, LATOUCHE J-B, SANTOS E et al.: Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. (2003) 9(3):279-286.
  • WESTWOOD JA, SMYTH MJ, TENG MWL et al.: Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc. Natl. Acad. Sci. USA (2005) 102(52):19051-19056.
  • KAHLON KS, BROWN C, COOPER LJN et al.: Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. (2004) 64:9160-9166.
  • PAMEIJER CRJ, NAVANJO A, MEECHOOVET B et al.: Conversion of a tumor-binding peptide identified by phage display to a functional chimeric T cell antigen receptor. Cancer Gene Ther. (2007) 14:91-97.
  • GROSS G, WAKS T, ESHHAR Z: Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA (1989) 86(24):10024-10028.
  • ALTENSCHMIDT U, KLUNDT E, GRONER B: Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression. J. Immunol. (1997) 159:5509-5515.
  • MAHER J, BRENTJENS RJ, GUNSET G, RIVIÈRE I, SADELAIN M: Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. (2002) 20:70-75.
  • WANG J, PRESS OW, LINDGREN CG et al.: Cellular immunotherapy for follicular lymphoma using genetically modified CD20-specific CD8+ cytotoxic T lymphocytes. Mol. Ther. (2004) 9(4):577-586.
  • KALERGIS AM, BOUCHERON N, DOUCEY M-A et al.: Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat. Immunol. (2001) 2(3):229-234.
  • HOMBACH AA, SCHILDGEN V, HEUSER C et al.: T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells. J. Immunol. (2007) 178:4650-4657.
  • FINNEY HM, AKBAR AN, LAWSON ADG: Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J. Immunol. (2004) 172:104-113.
  • IMAI C, MIHARA K, ANDREANSKY M et al.: Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia (2004) 18:676-684.
  • ROSSIG C, BOLLARD CM, NUCHTERN JG, ROONEY CM, BRENNER MK: Epstein–Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood (2002) 99(6):2009-2016.
  • COOPER LJN, AL-KADHIMI Z, SERRANO LM et al.: Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood (2005) 105(4):1622-1631.
  • KERSHAW MH, WESTWOOD JA, HWU P: Dual-specific T cells combine proliferation and antitumor activity. Nat. Biotechnol. (2002) 20:1221-1227.
  • LAMERS CHJ, SLEIJFER S, VILTO AG et al.: Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. (2006) 24(13):E20-E22.
  • BRODIE SJ, LEWINSOHN DA, PATTERSON BK et al.: In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat. Med. (1999) 5(1):34-41.
  • KERSHAW MH, WESTWOOD JA, PARKER LL et al.: A Phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. (2006) 12(20):6106-6115.
  • DUDLEY ME, WUNDERLICH JR, ROBBINS PF et al.: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science (2002) 298:850-854.
  • DUDLEY ME, WUNDERLICH JR, YANG JC et al.: Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. (2005) 23(10):2346-2357.
  • NAKAMURA TM, MORIN GB, CHAPMAN KB et al.: Telomerase catalytic subunit homologs from fission yeast and human. Science (1997) 277:955-959.
  • SHEN X, ZHOU J, HATHCOCK KS et al.: Persistence of tumor infiltrating lymphocytes in adoptive immunotherapy correlates with telomere length. J. Immunother. (2007) 30(1):123-129.
  • BODNAR AG, OUELLETTE M, FROLKIS M et al.: Extension of life-span by introduction of telomerase into normal human cells. Science (1998) 279:349-352.
  • DAGARAG M, EVAZYAN T, RAO N, EFFROS RB: Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J. Immunol. (2004) 173(10):6303-6311.
  • VERRA NCV, JORRITSMA A, WEIJER K et al.: Human telomerase reverse transcriptase-transduced human cytotoxic T cells suppress the growth of human melanoma in immunodeficient mice. Cancer Res. (2004) 64:2153-2161.
  • RÖTH A, BAERLOCHER GM, SCHERTZER M et al.: Telomere loss, senescence, and genetic instability in CD4+ T lymphocytes overexpressing hTERT. Blood (2005) 106(1):43-50.
  • SHRIKANT P, MESCHER MF: Opposing effects of IL-2 in tumor immunotherapy: promoting CD8 T cell growth and inducing apoptosis. J. Immunol. (2002) 169(4):1753-1759.
  • EATON D, GILHAM DE, O'NEILL A, HAWKINS RE: Retroviral transduction of human peripheral blood lymphocytes with bcl-xL promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. (2002) 9(8):527-535.
  • CHARO J, FINKELSTEIN SE, GREWAL N et al.: Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res. (2005) 65(5):2001-2008.
  • WALDMANN TA: The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. (2006) 6:595-601.
  • THOMPSON JA, LEE DJ, LINDGREN CG et al.: Influence of schedule of interleukin 2 administration on therapy with interleukin 2 and lymphokine activated killer cells. Cancer Res. (1989) 49:235-240.
  • LIU K, ROSENBERG SA: Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J. Immunol. (2001) 167:6356-6365.
  • LIU K, ROSENBERG SA: Interleukin-2-independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J. Immunother. (2003) 26(3):190-201.
  • DUBOIS S, MARINER J, WALDMANN TA, TAGAYA Y: IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity (2002) 17:537-547.
  • HSU C, HUGHES MS, ZHENG Z et al.: Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J. Immunol. (2005) 175(11):7226-7234.
  • HSU C, JONES SA, COHEN CJ et al.: Cytokine independent growth and clonal expansion of a primary human CD8+ T cell clone following retroviral transduction with the IL-15 gene. Blood (2007) 109(12):5168-5177.
  • NELSON BH, LORD JD, GREENBERG PD: Cytoplasmic domains of the interleukin-2 receptor β and γ chains mediate the signal for T-cell proliferation. Nature (1994) 369(6478):333-336.
  • EVANS LS, WITTE PR, FELDHAUS AL et al.: Expression of chimeric granulocyte-macrophage colony-stimulating factor/interleukin 2 receptors in human cytotoxic T lymphocyte clones results in granulocyte-macrophage colony-stimulating factor-depending growth. Hum. Gene Ther. (1999) 10:1941-1951.
  • CHENG LE, ÖHLÉN C, NELSON BH, GREENBERG PD: Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl. Acad. Sci. USA (2002) 99(5):3001-3006.
  • BUTCHER EC, PICKER LJ: Lymphocyte homing and homeostasis. Science (1996) 272:60-66.
  • MORA JR, VON ANDRIAN UH: Specificity and plasticity of memory lymphocyte migration. Curr. Top. Microbiol. Immunol. (2006) 308:83-116.
  • OCHSENBEIN AF, SIERRO S, ODERMATT B et al.: Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature (2001) 411:1058-1064.
  • CHEN W, JIN W, HARDEGEN N et al.: Conversion of peripheral CD4+CD25- naïve T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. (2003) 198(12):1875-1886.
  • VIANELLO F, PAPETA N, CHEN T et al.: Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J. Immunol. (2006) 176:2902-2914.
  • KERSHAW MH, WANG G, WESTWOOD JA et al.: Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther. (2002) 13:1971-1980.
  • YEE C, THOMPSON JA, ROCHE P et al.: Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J. Exp. Med. (2000) 192(11):1637-1643.
  • SHU CJ, GUO S, KIM YJ et al.: Visualization of a primary anti-tumor immune response by positron emission tomography. Proc. Natl. Acad. Sci. USA (2005) 102(48):17412-17417.
  • RIDDELL SR, ELLIOTT M, LEWINSOHN DA et al.: T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. (1996) 2(2):216-223.
  • BERGER C, FLOWERS ME, WARREN EH, RIDDELL SR: Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood (2006) 107(6):2294-2302.
  • LIANG Q, SATYAMURTHY N, BARRIO JR et al.: Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther. (2001) 8:1490-1498.
  • GAJEWSKI TF, MENG Y, BLANK C et al.: Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. (2006) 213:131-145.
  • AHMADZADEH M, ROSENBERG SA: TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J. Immunol. (2005) 174:5215-5223.
  • BOLLARD CM, RÖSSIG C, CALONGE MJ et al.: Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity. Blood (2002) 99(9):3179-3187.
  • LACUESTA K, BUZA E, HAUSER H et al.: Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-β receptor. J. Immunother. (2006) 29(3):250-260.
  • WOLFRAIM LA, FERNANDEZ TM, MAMURA M et al.: Loss of Smad3 in acute T-cell lymphoblastic leukemia. N. Engl. J. Med. (2004) 351(6):552-559.
  • HAHNE M, RIMOLDI D, SCHROTER M et al.: Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science (1996) 274(5291):1363-1366.
  • CHAMBERS CA, KUHNS MS, EGEN JG, ALLISON JP: CTLA-4 mediated inhibition in regulation of T cell responses: mechanisms and manipulations in tumor immunotherapy. Ann. Rev. Immunol. (2001) 19:565-594.
  • EGEN JG, KUHNS MS, ALLISON JP: CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. (2002) 3(7):611-618.
  • SHARPE AH, WHERRY EJ, AHMED R, FREEMAN GJ: The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. (2007) 8(3):239-245.
  • HANNON GJ, ROSSI JJ: Unlocking the potential of the human genome with RNA interference. Nature (2004) 431:371-378.
  • DOTTI G, SAVOLDO B, PULE M et al.: Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood (2005) 105(12):4677-4684.
  • WOLKOWICZ R, NOLAN GP: Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Ther. (2005) 12(6):467-476.
  • MITSUYASU RT, ANTON PA, DEEKS SG et al.: Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects. Blood (2000) 96(3):785-793.
  • LEVINE BL, HUMEAU LM, BOYER J et al.: Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA (2006) 103(46):17372-17377.
  • CAVAZZANA-CALVO M, HACEIN-BEY S, DE SAINT BASILE G et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (2000) 288:669-672.
  • BONINI C, GREZ M, TRAVERSARI C et al.: Safety of retroviral gene marking with a truncated NGF receptor. Nat. Med. (2003) 9(4):367-369.
  • LAL S, LAUER UM, NIETHAMMER D, BECK JF, SCHLEGEL PG: Suicide genes: past, present and future perspectives. Immunol. Today (2000) 21(1):48-54.
  • ST.CLAIR MH, LAMBE CU, FURMAN PA: Inhibition by ganciclovir of cell growth and DNA synthesis of cells biochemically transformed with herpesvirus genetic information. Antimicrob. Agents Chemother. (1987) 31(6):844-849.
  • COHEN JL, BOYER O, SALOMON B et al.: Prevention of graft-versus-host disease in mice using a suicide gene expressed in T lymphocytes. Blood (1997) 89(12):4636-4645.
  • BONINI C, FERRARI G, VERZELETTI S et al.: HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science (1997) 276:1719-1724.
  • SPENCER DM, BELSHAW PJ, CHEN L et al.: Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr. Biol. (1996) 6(7):839-847.
  • MACCORKLE RA, FREEMAN KW, SPENCER DM: Synthetic activation of caspases: artificial death switches. Proc. Natl. Acad. Sci. USA (1998) 95(7):3655-3660.
  • THOMIS DC, MARKTEL S, BONINI C et al.: A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood (2001) 97(5):1249-1257.
  • BERGER C, BLAU CA, CLACKSON T, RIDDELL SR, HEIMFELD S: CD28 costimulation and immunoaffinity-based selection efficiently generate primary gene-modified T cells for adoptive immunotherapy. Blood (2003) 101(2):476-484.
  • BERGER C, BLAU CA, HUANG ML et al.: Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model. Blood (2004) 103(4):1261-1269.
  • FAN L, FREEMAN KW, KHAN T, PHAM E, SPENCER DM: Improved artificial death switches based on caspases and FADD. Hum. Gene Ther. (1999) 10:2273-2285.
  • STRAATHOF KC, PULÈ MA, YOTNDA P et al.: An inducible caspase 9 safety switch for T-cell therapy. Blood (2005) 105(11):4247-4254.
  • FRANK O, RUDOLPH C, HEBERLEIN C et al.: Tumor cells escape suicide gene therapy by genetic and epigenetic instability. Blood (2004) 104(12):3543-3549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.