141
Views
8
CrossRef citations to date
0
Altmetric
Review

Novel candidate disease for gene therapy: metachromatic leukodystrophy

&
Pages 1193-1205 | Published online: 14 Aug 2007

Bibliography

  • NEUFELD EF: Lysosomal disease. Ann. Rev. Biochem. (1991) 60:257-280.
  • AICARDÌ J: Disease of the Nervous System in Childhood. Cambridge University Press, UK (1998).
  • NEUFELD EF, MUENZER J: The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D (Eds), McGraw-Hill, New York, USA (2001).
  • COSMA MP, PEPE S, ANNUNZIATA I et al.: The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell (2003) 113:445-456.
  • DIERKS T, SCHMIDT B, BORISSENKO LV et al.: Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(α)-formylglycine generating enzyme. Cell (2003) 113:435-444.
  • ENG B, NAKAMURA LN, O'REILLY N et al.: Identification of nine novel arylsulfatase a (ARSA) gene mutations in patients with metachromatic leukodystrophy (MLD). Hum. Mutat. (2003) 22:418-419.
  • BERNA L, GIESELMANN V, POUPETOVA H, HREBICEK M, ELLEDER M, LEDVINOVA J: Novel mutations associated with metachromatic leukodystrophy: phenotype and expression studies in nine Czech and Slovak patients. Am. J. Med. Genet. (2004) 129A:277-281.
  • MARCAO AM, WIEST R, SCHINDLER K et al.: Adult onset metachromatic leukodystrophy without electroclinical peripheral nervous system involvement: a new mutation in the ARSA gene. Arch. Neurol. (2005) 62:309-313.
  • LUGOWSKA A, AMARAL O, BERGER J et al.: Mutations c.459+1G > A and p.P426L in the ARSA gene: prevalence in metachromatic leukodystrophy patients from European countries. Mol. Genet. Metab. (2005) 86:353-359.
  • VON FIGURA K, JAEKEN J: Metachromatic leukodystrophy. In: The Metabolic and Molecular Bases of Inherited Diseases (Volume 3, 8th Edition). Scriver CR, Beaudet AL, Valle D, Sly WS (Eds), McGraw-Hill, UK (2001):3695-3724.
  • RAUSCHKA H, COLSCH B, BAUMANN N et al.: Late-onset metachromatic leukodystrophy: genotype strongly influences phenotype. Neurology (2006) 67:859-863.
  • SEVIN C, AUBOURG P, CARTIER N: Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J. Inherit. Metab. Dis. (2007) 30:175-183.
  • HESS B, SAFTIG P, HARTMANN D et al.: Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc. Natl. Acad. Sci. USA (1996) 93:14821-14826.
  • OHMI K, GREENBERG DS, RAJAVEL KS, RYAZANTSEV S, LI HH, NEUFELD EF: Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc. Natl. Acad. Sci. USA (2003) 100:1902-1907.
  • YAGHOOTFAM A, GIESELMANN V, ECKHARDT M: Delay of myelin formation in arylsulphatase A-deficient mice. Eur. J. Neurosci. (2005) 21:711-720.
  • BARRANGER JA, O'ROURKE E: Lessons learned from the development of enzyme therapy for Gaucher disease. J. Inherit. Metab. Dis. (2001) 24:89-96.
  • DESNICK RJ, IOANNOU YA, ENG CM: In: Metabolic and Molecular Bases of Inherited Diseases. Scriver CR, Beaudet AL, Sly WS, Valle D (Eds), McGraw-Hill, UK (2001):3733-3774.
  • ENG CM, GUFFON N, WILCOX WR et al.: Safety and efficacy of recombinant human α-galactosidase A replacement therapy in Fabry's disease. N. Engl. J. Med. (2001) 345:9-16.
  • KAKKIS ED, MUENZER J, TILLER GE et al.: Enzyme-replacement therapy in mucopolysaccharidosis I. N. Engl. J. Med. (2001) 344:182-188.
  • BRADY RO, SCHIFFMANN R: Enzyme-replacement therapy for metabolic storage disorders. Lancet Neurol. (2004) 3:752-756.
  • MATZNER UH: Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum. Mol. Genet. (2005) 14:1139-1152.
  • VAN DEN HOUT JM, KAMPHOVEN JH, WINKEL LP et al.: Long-term intravenous treatment of Pompe disease with recombinant human α-glucosidase from milk. Pediatrics (2004) 113:448-457.
  • KAKKIS E, LESTER T, YANG R et al.: Successful induction of immune tolerance to enzyme replacement therapy in canine mucopolysaccharidosis I. Proc. Natl. Acad. Sci. USA (2004) 101:829-834.
  • MIEBACH E: Enzyme replacement therapy in mucopolysaccharidosis Type I. Acta Paediatr. Suppl. (2005) 94:58-60.
  • KRIVIT W, PETERS C, SHAPIRO EG: Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease Type III. Curr. Opin. Neurol. (1999) 12:167-176.
  • KRIVIT W, SUNG JH, SHAPIRO EG, LOCKMAN LA: Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant. (1995) 4:385-392.
  • ESCOLAR ML, POE MD, PROVENZALE JM et al.: Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease. N. Engl. J. Med. (2005) 352:2069-2081.
  • PETERS C, STEWARD CG: Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant. (2003) 31:229-239.
  • BREDIUS RG, LAAN LA, LANKESTER AC et al.: Early marrow transplantation in a pre-symptomatic neonate with late infantile metachromatic leukodystrophy does not halt disease progression. Bone Marrow Transplant. (2007) 39:309-310.
  • KAY MA, GLORIOSO JC, NALDINI L: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. (2001) 7:33-40.
  • GLORIOSO JC, MATA M, FINK DJ: Therapeutic gene transfer to the nervous system using viral vectors. J. Neurovirol. (2003) 9:165-172.
  • SONDHI D, HACKETT NR, PETERSON DA et al.: Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol. Ther. (2007) 15:481-491.
  • CONSIGLIO A, QUATTRINI A, MARTINO S et al.: In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairment in affected mice. Nat. Med. (2001) 7:310-316.
  • BOSCH A, PERRET E, DESMARIS N, TRONO D, HEARD JM: Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther. (2000) 11:1139-1150.
  • STEIN CS, GHODSI A, DERKSEN T, DAVIDSON BL: Systemic and central nervous system correction of lysosomal storage in mucopolysaccharidosis type VII mice. J. Virol. (1999) 73:3424-3429.
  • STEIN CS, KANG Y, SAUTER SL et al.: In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol. Ther. (2001) 3:850-856.
  • SKORUPA AF, FISHER JK, WILSON JM, PARENTE MK, WOLFE JH: Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp. Neurol. (1999) 160:17-27.
  • DESMARIS N, VEROT L, PUECH JP, CAILLAUD C, VANIER MT, HEARDT JM: Prevention of neuropathology in the mouse model of Hurler syndrome. Ann. Neurol. (2004) 56:68-76.
  • CIRON C, DESMARIS N, COLLE MA et al.: Gene therapy of the brain in the dog model of Hurler's syndrome. Ann. Neurol. (2006) 60:204-213.
  • CRESSANT A, DESMARIS N, VEROT L et al.: Improved behavior and neuropathology in the mouse model of Sanfilippo Type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum. J. Neurosci. (2004) 24:10229-10239.
  • SEVIN C, BENRAISS A, VAN DAM D et al.: Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Hum. Mol. Genet. (2006) 15:53-64.
  • SEVIN C, VEROT L, BENRAISS A et al.: Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Ther. (2007) 14:405-414.
  • NALDINI L, BLOMER U, GALLAY P et al.: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (1996) 272:263-267.
  • BLOMER U, NALDINI L, KAFRI T, TRONO D, VERMA IM, GAGE FH: Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. (1997) 71:6641-6649.
  • ZUFFEREY R, NAGY D, MANDEL RJ, NALDINI L, TRONO D: Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. (1997) 15:871-875.
  • ZUFFEREY R, DULL T, MANDEL RJ et al.: Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. (1998) 72:9873-9880.
  • KORDOWER JH, BLOCH J, MA SY et al.: Lentiviral gene transfer to the nonhuman primate brain. Exp. Neurol. (1999) 160:1-16.
  • LUCA T, GIVOGRI MI, PERANI L et al.: Axons mediate the distribution of arylsulfatase a within the mouse hippocampus upon gene delivery. Mol. Ther. (2005) 12:669-679.
  • HASKELL RE, HUGHES SM, CHIORINI JA, ALISKY JM, DAVIDSON BL: Viral-mediated delivery of the late-infantile neuronal ceroid lipofuscinosis gene, TPP-I to the mouse central nervous system. Gene Ther. (2003) 10:34-42.
  • GRIFFEY M, BIBLE E, VOGLER C et al.: Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol. Dis. (2004) 16:360-369.
  • BROOKS AI, STEIN CS, HUGHES SM et al.: Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc. Natl. Acad. Sci. USA (2002) 99:6216-6221.
  • KURAI T, HISAYASU S, KITAGAWA R et al.: AAV1 Mediated co-expression of formylglycine-generating enzyme and arylsulfatase A efficiently corrects sulfatide storage in a mouse model of metachromatic leukodystrophy. Mol. Ther. (2007) 15:38-43.
  • FRALDI A, BIFFI A, LOMBARDI A et al.: SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochem. J. (2007) 403(2):305-312.
  • WATSON GL, SAYLES JN, CHEN C et al.: Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus. Gene Ther. (1998) 5:1642-1649.
  • PRILLER J, FLUGEL A, WEHNER T et al.: Targeting gene-modified hematopoietic cells to central nervous system; use of green fluorescent proteine uncovers microglial engraftment. Nat. Med. (2001) 7:1356-1361.
  • BIFFI A, CAPOTONDO A, FASANO S et al.: Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J. Clin. Invest. (2006) 116:3070-3082.
  • LEIMING T, MANN L, DEL PILAR MARTIN M et al.: Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood (2002) 99:3169-3178.
  • ZHENG Y, ROZENGURT N, RYAZANTSEV S, KOHN DB, SATYAKE N, NEUFELD EF: Treatment of the mouse model of mucopolysaccharidosis I with retrovirally tyransduced bone marrow. Mol. Genet. Metab. (2003) 79:233-244.
  • WADA R, TIFFT CJ, PROIA RL: Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc. Natl. Acad. Sci. USA (2000) 97:10954-10959.
  • GERMAN DC, LIANG CL, SONG T, YAZDANI U, XIE C, DIETSCHY JM: Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience (2002) 109:437-450.
  • EGLITIS MA, MEZEY E: Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA (1997) 94:4080-4085.
  • KENNEDY DW, ABKOWITZ JL: Kinetics of central nervous system microglial and macrophage engraftment. Analysis using a transgenic bone marrow transplantation model. Blood (1997) 90:986-993.
  • BIFFI A, DE PALMA M, QUATTRINI A et al.: Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Invest. (2004) 113:1118-1129.
  • YEAGER AM, SHINOHARA M, SHINN C: Hematopoietic cell transplantation after administration of high-dose busulfan in murine globoid cell leukodystrophy (the twitcher mouse). Pediatr. Res. (1991) 29:302-305.
  • YEAGER AM, SHINN C, SHINOHARA M, PARDOLL DM: Hematopoietic cell transplantation in the twitcher mouse. The effects of pretransplant conditioning with graded doses of busulfan. Transplantation (1993) 56:185-190.
  • SANO R, TESSITORE A, INGRASSIA A, D'AZZO A: Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology. Blood (2005) 106:2259-2268.
  • HOFLING AA, DEVINE S, VOGLER C, SANDS MS: Human CD34+ hematopoietic progenitor cell-directed lentiviral-mediated gene therapy in a xenotransplantation model of lysosomal storage disease. Mol. Ther. (2004) 9:856-865.
  • ASHEUER M, PFLUMIO F, BENHAMIDA S et al.: Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc. Natl. Acad. Sci. USA (2004) 101:3557-3562.
  • MATZNER U, HARZER K, LEARISH RD, BARRANGER JA, GIESELMANN V: Long-term expression and transfer of arylsulfatase A into brain of arylsulfatase A-deficient mice transplanted with bone marrow expressing the arylsulfatase A cDNA from a retroviral vector. Gene Ther. (2000) 7:1250-1257.
  • MATZNER U, SCHESTAG F, HARTMANN D et al.: Bone marrow stem cell gene therapy of arylsulfatase A-deficient mice, using an arylsulfatase A mutant that is hypersecreted from retrovirally transduced donor-type cells. Hum. Gene Ther. (2001) 12:1021-1033.
  • MIYOSHI H, SMITH KA, MOSIER DE, VERMA IM, TORBETT BE: Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science (1999) 283:682-686.
  • GUENECHEA G, GAN OI, INAMITSU T et al.: Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol. Ther. (2000) 1:566-573.
  • GUENECHEA G, GAN OI, DORRELL C, DICK JE: Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. (2001) 2:75-82.
  • AILLES L, SCHMIDT M, SANTONI DE SIO FR et al.: Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cell. Mol. Ther. (2002) 6:615-626.
  • OUREDNIK V, OUREDNIK J, FLAX JD et al.: Segregation of human neural stem cells in the developing primate forebrain. Science (2001) 293:1820-1824.
  • TAMAKI S, ECKERT K, HE D et al.: Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J. Neurosci. Res. (2002) 69:976-986.
  • FRICKER RA, CARPENTER MK, WINKLER C, GRECO C, GATES MA, BJORKLUND A: Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. (1999) 19:5990-6005.
  • RUBIO FJ, BUENO C, VILLA A, NAVARRO B, MARTINEZ-SERRANO A: Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol. Cell Neurosci. (2000) 16:1-13.
  • ENGLUND U, BJORKLUND A, WICTORIN K: Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Brain Res. Dev. Brain Res. (2002) 134:123-141.
  • WU P, TARASENKO YI, GU Y, HUANG LY, COGGESHALL RE, YU Y: Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat. Neurosci. (2002) 5:1271-1278.
  • FLAX JD, AURORA S, YANG C et al.: Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. (1998) 16:1033-1039.
  • GAGE FH, RAY J, FISHER LJ: Isolation, characterization, and use of stem cells from the CNS. Ann. Rev. Neurosci. (1995) 18:159-192.
  • MCKAY R: Stem cells in the central nervous system. Science (1997) 276:66-71.
  • SNYDER EY: Immortalized neural stem cells: insights into development; prospects for gene therapy and repair. Proc. Natl. Acad. Sci. USA (1995) 107:195-204.
  • SNYDER EY, TAYLOR RM, WOLFE JH: Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature (1995) 374:367-370.
  • LEE JP, JEYAKUMAR M, GONZALEZ R et al.: Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat. Med. (2007) 13(4):439-447.
  • BUCHET D, SERGUERA C, ZENNOU V, CHARNEAU P, MALLET J: Long-term expression of β-glucuronidase by genetically modified human neural progenitor cells grafted into the mouse central nervous system. Mol. Cell Neurosci. (2002) 19:389-401.
  • MENG XL, SHEN JS, OHASHI T, MAEDA H, KIM SU, ETO Y: Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis Type VII mouse. J. Neurosci. Res. (2003) 74:266-277.
  • TAYLOR RM, WOLFE JH: Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of β-glucuronidase. Nat. Med. (1997) 3:771-774.
  • ROSS CJ, RALPH M, CHANG PL: Somatic gene therapy for a neurodegenerative disease using microencapsulated recombinant cells. Exp. Neurol. (2000) 166:276-286.
  • BARSOUM SC, MILGRAM W, MACKAY W et al.: Delivery of recombinant gene product to canine brain with the use of microencapsulation. J. Lab. Clin. Med. (2003) 142:399-413.
  • KOSUGA M, TAKAHASHI S, TANABE A et al.: Widespread distribution of adenovirus-transduced monkey amniotic epithelial cells after local intracerebral injection: implication for cell-mediated therapy for lysosome storage disorders. Cell Transplant. (2001) 10:435-439.
  • PLUCHINO S, QUATTRINI A, BRAMBILLA E et al.: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature (2003) 422:688-694.
  • PLUCHINO S, ZANOTTI L, ROSSI B et al.: Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature (2005) 436:266-271.
  • KAWABATA K, MIGITA M, MOCHIZUKI H et al.: Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res. (2006) 1094:13-23.
  • BLAKEMORE WF, GILSON JM, CRANG AJ: The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors. Exp. Neurol. (2003) 184:955-963.
  • KIM JH, AUERBACH JM, RODRIGUEZ-GOMEZ JA et al.: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature (2002) 418:50-56.
  • GIVOGRI MI, GALBIATI F, FASANO S et al.: Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. J. Neurosci. (2006) 26:3109-3119.
  • KLEIN D, SCHMANDT T, MUTH-KOHNE E et al.: Embryonic stem cell-based reduction of central nervous system sulfatide storage in an animal model of metachromatic leukodystrophy. Gene Ther. (2006) 13:1686-1695.
  • SARDIELLO M, ANNUNZIATA I, ROMA G, BALLABIO A: Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum. Mol. Genet. (2005) 14:3203-3217.
  • FISCHER A, ABINA SH, THRASHER A, VON KALLE C, CAVAZZANA-CALVO M: LMO2 and gene therapy for severe combined immunodeficiency. N. Engl. J. Med. (2004) 350:2526-2527.
  • DE PALMA M, MONTINI E, SANTONI DE SIO FR et al.: Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood (2005) 105:2307-2315.
  • MONTINI E, CESANA D, SCHMIDT M et al.: Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol. (2006) 24:687-696.
  • UNGER ER, SUNG JH, MANIVEL JC, CHENGGIS ML, BLAZAR BR, KRIVIT W: Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J. Neuropathol. Exp. Neurol. (1993) 52:460-470.
  • VITE CH, MCGOWAN JC, NIOGI SN et al.: Effective gene therapy for an inherited CNS disease in a large animal model. Ann. Neurol. (2005) 57:355-364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.