139
Views
20
CrossRef citations to date
0
Altmetric
Review

T-cell receptor gene therapy for cancer: the progress to date and future objectives

, , , &
Pages 1207-1218 | Published online: 14 Aug 2007

Bibliography

  • MCLAUGHLIN PM, KROESEN BJ, HARMSEN MC, DE LEIJ LF: Cancer immunotherapy: insights from transgenic animal models. Crit. Rev. Oncol. Hematol. (2001) 40(1):53-76.
  • OSTRAND-ROSENBERG S: Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr. Opin. Immunol. (2004) 16(2):143-150.
  • TURK MJ, GUEVARA-PATINO JA, RIZZUTO GA et al.: Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J. Exp. Med. (2004) 200(6):771-782.
  • HANSON HL, DONERMEYER DL, IKEDA H et al.: Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity (2000) 13(2):265-276.
  • SLINGLUFF CL Jr, DARROW TL, SEIGLER HF: Melanoma-specific cytotoxic T cells generated from peripheral blood lymphocytes. Implications of a renewable source of precursors for adoptive cellular immunotherapy. Ann. Surg. (1989) 210(2):194-202.
  • ASEMISSEN AM, KEILHOLZ U, TENZER S et al.: Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin. Cancer Res. (2006) 12(24):7476-7482.
  • GILLMORE R, XUE SA, HOLLER A et al.: Detection of Wilms' tumor antigen–specific CTL in tumor-draining lymph nodes of patients with early breast cancer. Clin. Cancer Res. (2006) 12(1):34-42.
  • BIOLEY G, JANDUS C, TUYAERTS S et al.: Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J. Immunol. (2006) 177(10):6769-6779.
  • BONEHILL A, HEIRMAN C, THIELEMANS K: Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy. J. Gene Med. (2005) 7(6):686-695.
  • KNUTSON KL, DISIS ML: Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother. (2005) 54(8):721-728.
  • LAPORT GG, LEVINE BL, STADTMAUER EA et al.: Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood (2003) 102(6):2004-2013.
  • RIDDELL SR, BLEAKLEY M, NISHIDA T, BERGER C, WARREN EH: Adoptive transfer of allogeneic antigen-specific T cells. Biol. Blood Marrow Transplant. (2006) 12(1 Suppl. 1):9-12.
  • DUDLEY ME, WUNDERLICH JR, ROBBINS PF et al.: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science (2002) 298(5594):850-854.
  • DUDLEY ME, WUNDERLICH JR, YANG JC et al.: A Phase I study of non-myeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J. Immunother. (2002) 25(3):243-251.
  • DUDLEY ME, WUNDERLICH JR, SHELTON TE, EVEN J, ROSENBERG SA: Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. (2003) 26(4):332-342.
  • DUDLEY ME, WUNDERLICH JR, YANG JC et al.: Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. (2005) 23(10):2346-2357.
  • ROSENBERG SA, YANNELLI JR, YANG JC et al.: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. (1994) 86(15):1159-1166.
  • GATTINONI L, KLEBANOFF CA, PALMER DC et al.: Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. (2005) 115(6):1616-1626.
  • NALDINI L, BLOMER U, GALLAY P et al.: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (1996) 272(5259):263-267.
  • CAVALIERI S, CAZZANIGA S, GEUNA M et al.: Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood (2003) 102(2):497-505.
  • ALVES NL, AROSA FA, VAN LIER RA: IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells. J. Immunol. (2005) 175(2):755-762.
  • CLAY TM, CUSTER MC, SACHS J et al.: Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J. Immunol. (1999) 163(1):507-513.
  • COOPER LJ, KALOS M, LEWINSOHN DA, RIDDELL SR, GREENBERG PD: Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J. Virol. (2000) 74(17):8207-8212.
  • FUJIO K, MISAKI Y, SETOGUCHI K et al.: Functional reconstitution of class II MHC-restricted T cell immunity mediated by retroviral transfer of the αβ TCR complex. J. Immunol. (2000) 165(1):528-532.
  • KESSELS HW, WOLKERS MC, VAN DB, VAN DER VALK MA, SCHUMACHER TN: Immunotherapy through TCR gene transfer. Nat. Immunol. (2001) 2(10):957-961.
  • STANISLAWSKI T, VOSS RH, LOTZ C et al.: Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. (2001) 2(10):962-970.
  • HEEMSKERK MH, HOOGEBOOM M, DE PAUS RA et al.: Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved α joining region. Blood (2003) 102(10):3530-3540.
  • MORGAN RA, DUDLEY ME, YU YY et al.: High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J. Immunol. (2003) 171(6):3287-3295.
  • CLAY TM, NISHIMURA MI: Retroviral transfer of T-cell receptor genes into human peripheral blood lymphocytes. Methods Mol. Biol. (2003) 215:227-234.
  • SCHAFT N, WILLEMSEN RA, DE VRIES J et al.: Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR αβ genes into primary human T lymphocytes. J. Immunol. (2003) 170(4):2186-2194.
  • TAHARA H, FUJIO K, ARAKI Y et al.: Reconstitution of CD8+ T cells by retroviral transfer of the TCR αβ-chain genes isolated from a clonally expanded P815-infiltrating lymphocyte. J. Immunol. (2003) 171(4):2154-2160.
  • CHAMOTO K, TSUJI T, FUNAMOTO H et al.: Potentiation of tumor eradication by adoptive immunotherapy with T-cell receptor gene-transduced T-helper type 1 cells. Cancer Res. (2004) 64(1):386-390.
  • HEEMSKERK MH, HOOGEBOOM M, HAGEDOORN R et al.: Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J. Exp. Med. (2004) 199(7):885-894.
  • MORRIS EC, TSALLIOS A, BENDLE GM, XUE SA, STAUSS HJ: A critical role of T cell antigen receptor-transduced MHC class I-restricted helper T cells in tumor protection. Proc. Natl. Acad. Sci. USA (2005) 102(22):7934-7939.
  • XUE SA, GAO L, HART D et al.: Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood (2005) 106(9):3062-3067.
  • RUBINSTEIN MP, KADIMA AN, SALEM ML et al.: Transfer of TCR genes into mature T cells is accompanied by the maintenance of parental T cell avidity. J. Immunol. (2003) 170(3):1209-1217.
  • SCHAFT N, WILLEMSEN RA, DE VRIES J et al.: Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR αβ genes into primary human T lymphocytes. J. Immunol. (2003) 170(4):2186-2194.
  • DE WITTE MA, COCCORIS M, WOLKERS MC et al.: Targeting self-antigens through allogeneic TCR gene transfer. Blood (2006) 108(3):870-877.
  • DUVAL L, SCHMIDT H, KALTOFT K et al.: Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a Phase I trial in metastatic melanoma. Clin. Cancer Res. (2006) 12(4):1229-1236.
  • MORGAN RA, DUDLEY ME, WUNDERLICH JR et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science (2006) 314(5796):126-129.
  • MELO JV: The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood (1996) 88(7):2375-2384.
  • SUGIYAMA H: Wilms tumor gene WT1 as a tumor marker for leukemic blast cells and its role in leukemogenesis. Methods Mol. Med. (2002) 68:223-237.
  • OKA Y, TSUBOI A, KAWAKAMI M et al.: Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers. Curr. Med. Chem. (2006) 13(20):2345-2352.
  • LAMERS CH, SLEIJFER S, VULTO AG et al.: Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. (2006) 24(13):E20-E22.
  • SOMMERMEYER D, NEUDORFER J, WEINHOLD M et al.: Designer T cells by T cell receptor replacement. Eur. J. Immunol. (2006) 36(11):3052-3059.
  • HEEMSKERK MH, HAGEDOORN RS, VAN DER HOORN MA et al.: Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood (2007) 109(1):235-243.
  • WILLEMSEN RA, WEIJTENS ME, RONTELTAP C et al.: Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther. (2000) 7(16):1369-1377.
  • ZERRAHN J, HELD W, RAULET DH: The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell (1997) 88(5):627-636.
  • COHEN CJ, ZHAO Y, ZHENG Z, ROSENBERG SA, MORGAN RA: Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. (2006) 66(17):8878-8886.
  • KUBALL J, DOSSETT ML, WOLFL M et al.: Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood (2007) 109(6):2331-2338.
  • COHEN CJ, LI YF, EL-GAMIL M et al.: Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. (2007) 67(8):3898-3903.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. (2003) 348(3):255-256.
  • MARSHALL E: Gene therapy. Second child in French trial is found to have leukemia. Science (2003) 299(5605):320.
  • CHECK E: Gene therapy put on hold as third child develops cancer. Nature (2005) 433(7026):561.
  • WOODS NB, BOTTERO V, SCHMIDT M, VON KALLE C, VERMA IM: Gene therapy: therapeutic gene causing lymphoma. Nature (2006) 440(7088):1123.
  • PIKE-OVERZET K, DE RIDDER D, WEERKAMP F et al.: Gene therapy: is IL2RG oncogenic in T-cell development? Nature (2006) 443(7109):E5.
  • THRASHER AJ, GASPAR HB, BAUM C et al.: Gene therapy: X-SCID transgene leukaemogenicity. Nature (2006) 443(7109):E5-E6.
  • RECCHIA A, BONINI C, MAGNANI Z et al.: Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc. Natl. Acad. Sci. USA (2006) 103(5):1457-1462.
  • BONINI C, FERRARI G, VERZELETTI S et al.: HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science (1997) 276(5319):1719-1724.
  • TIBERGHIEN P, CAHN JY, BRION A et al.: Use of donor T-lymphocytes expressing herpes-simplex thymidine kinase in allogeneic bone marrow transplantation: a Phase I–II study. Hum. Gene Ther. (1997) 8(5):615-624.
  • STRAATHOF KC, PULE MA, YOTNDA P et al.: An inducible caspase 9 safety switch for T-cell therapy. Blood (2005) 105(11):4247-4254.
  • INTRONA M, BARBUI AM, BAMBACIONI F et al.: Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum. Gene Ther. (2000) 11(4):611-620.
  • WU X, LI Y, CRISE B, BURGESS SM: Transcription start regions in the human genome are favored targets for MLV integration. Science (2003) 300(5626):1749-1751.
  • SCHAMBACH A, BOHNE J, CHANDRA S et al.: Equal potency of γ-retroviral and lentiviral SIN vectors for expression of O-6-methylguanine-DNA methyltransferase in hematopoietic cells. Mol. Ther. (2006) 13(2):391-400.
  • BAUM C, SCHAMBACH A, BOHNE J, GALLA M: Retrovirus vectors: toward the plentivirus? Mol. Ther. (2006) 13(6):1050-1063.
  • GUSTAFSSON C, GOVINDARAJAN S, MINSHULL J: Codon bias and heterologous protein expression. Trends Biotechnol. (2004) 22(7):346-353.
  • SCHOLTEN KB, KRAMER D, KUETER EW et al.: Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin. Immunol. (2006) 119(2):135-145.
  • ZEH HJ III, PERRY-LALLEY D, DUDLEY ME, ROSENBERG SA, YANG JC: High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol. (1999) 162(2):989-994.
  • GAO L, BELLANTUONO I, ELSASSER A et al.: Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood (2000) 95(7):2198-2203.
  • BOULTER JM, JAKOBSEN BK: Stable, soluble, high-affinity, engineered T cell receptors: novel antibody-like proteins for specific targeting of peptide antigens. Clin. Exp. Immunol. (2005) 142(3):454-460.
  • BUONPANE RA, MOZA B, SUNDBERG EJ, KRANZ DM: Characterization of T cell receptors engineered for high affinity against toxic shock syndrome toxin-1. J. Mol. Biol. (2005) 353(2):308-321.
  • CHLEWICKI LK, HOLLER PD, MONTI BC, CLUTTER MR, KRANZ DM: High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3. J. Mol. Biol. (2005) 346(1):223-239.
  • WEBER KS, DONERMEYER DL, ALLEN PM, KRANZ DM: Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function. Proc. Natl. Acad. Sci. USA (2005) 102(52):19033-19038.
  • HOLLER PD, CHLEWICKI LK, KRANZ DM: TCRs with high affinity for foreign pMHC show self-reactivity. Nat. Immunol. (2003) 4(1):55-62.
  • KUBALL J, SCHMITZ FW, VOSS RH et al.: Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. Immunity (2005) 22(1):117-129.
  • YANG L, QIN XF, BALTIMORE D, VAN PARIJS L: Generation of functional antigen-specific T cells in defined genetic backgrounds by retrovirus-mediated expression of TCR cDNAs in hematopoietic precursor cells. Proc. Natl. Acad. Sci. USA (2002) 99(9):6204-6209.
  • YANG L, BALTIMORE D: Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc. Natl. Acad. Sci. USA (2005) 102(12):4518-4523.
  • HOLST J, VIGNALI KM, BURTON AR, VIGNALI DA: Rapid analysis of T-cell selection in vivo using T cell-receptor retrogenic mice. Nat. Methods (2006) 3(3):191-197.
  • ZHAO Y, PARKHURST MR, ZHENG Z et al.: Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via Notch signaling. Cancer Res. (2007) 67(6):2425-2429.
  • DONNELLY ML, LUKE G, MEHROTRA A et al.: Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J. Gen. Virol. (2001) 82(Part 5):1013-1025.
  • FLASSHOVE M, BARDENHEUER W, SCHNEIDER A et al.: Type and position of promoter elements in retroviral vectors have substantial effects on the expression level of an enhanced green fluorescent protein reporter gene. J. Cancer Res. Clin. Oncol. (2000) 126(7):391-399.
  • SZYMCZAK AL, WORKMAN CJ, WANG Y et al.: Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. (2004) 22(5):589-594.
  • GERLONI M, ZANETTI M: CD4 T cells in tumor immunity. Springer Semin. Immunopathol. (2005) 27(1):37-48.
  • ROSZKOWSKI JJ, LYONS GE, KAST WM et al.: Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res. (2005) 65(4):1570-1576.
  • ZHAO Y, ZHENG Z, ROBBINS PF et al.: Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J. Immunol. (2005) 174(7):4415-4423.
  • TSUJI T, YASUKAWA M, MATSUZAKI J et al.: Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood (2005) 106(2):470-476.
  • KESSELS HW, SCHEPERS K, VAN DB, TOPHAM DJ, SCHUMACHER TN: Generation of T cell help through a MHC class I-restricted TCR. J. Immunol. (2006) 177(2):976-982.
  • WILLEMSEN R, RONTELTAP C, HEUVELING M, DEBETS R, BOLHUIS R: Redirecting human CD4+ T lymphocytes to the MHC class I-restricted melanoma antigen MAGE-A1 by TCR αβ gene transfer requires CD8α. Gene Ther. (2005) 12(2):140-146.
  • WILLEMSEN RA, SEBESTYEN Z, RONTELTAP C et al.: CD8α coreceptor to improve TCR gene transfer to treat melanoma: down-regulation of tumor-specific production of IL-4, IL-5, and IL-10. J. Immunol. (2006) 177(2):991-998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.