239
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Targeted therapy in acute myeloid leukaemia: current status and future directions

, MD PhD, , MD PhD, , MD & , MD PhD
Pages 433-455 | Published online: 01 Apr 2009

Bibliography

  • Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid eukemia. J Clin Oncol 2003;21(24):4642-9
  • Sawyers CL, Denny CT, Witte ON. Leukemia and the disruption of normal hematopoiesis. Cell 1991;64(2):337-50
  • Estey E, Dohner H. Acute myeloid leukaemia. Lancet 2006;368(9550):1894-907
  • Burnett AK. Acute myeloid leukemia: treatment of adults under 60 years. Rev Clin Exp Hematol 2002;6(1):26-45; discussion 86-7
  • Farag SS, Archer KJ, Mrozek K, et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood 2006;108(1):63-73
  • Dombret H, Raffoux E, Degos L. Management of elderly patients with acute myeloid leukemia. Hematology Eur Hematol Assoc Educ Program 2007;1(1):193-9
  • Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998;92(7):2322-33
  • Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 2001;98(5):1312-20
  • Wheatley K, Burnett AK, Goldstone AH, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council's Adult and Childhood Leukaemia Working Parties. Br J Haematol 1999;107(1):69-79
  • Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000;96(13):4075-83
  • Schlenk RF, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008 ;358(18):1909-18
  • Wouters BJ, Lowenberg B, Delwel R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 2009;113(2):291-8
  • Kotecha N, Flores NJ, Irish JM, et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 2008;14(4):335-43
  • Kell J. Emerging treatments in acute myeloid leukaemia. Expert Opin Emerg Drugs 2004;9(1):55-71
  • Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389(6648):251-60
  • Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 2005;23(17):3971-93
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007;128(4):683-92
  • Bi G, Jiang G. The molecular mechanism of HDAC inhibitors in anticancer effects. Cell Mol Immunol 2006;3(4):285-90
  • de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370(Pt 3):737-49
  • Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005;18(5):601-7
  • Lehrmann H, Pritchard LL, Harel-bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 2002;86:41-65
  • Bruserud O, Stapnes C, Tronstad KJ, et al. Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML. Expert Opin Ther Targets 2006;10(1):51-68
  • Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006;5(1):37-50
  • Amin HM, Saeed S, Alkan S. Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 2001;115(2):287-97
  • Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 2005;25(13):5429-44
  • Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005;280(29):26729-34
  • Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002;1(4):287-99
  • Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 2005;102(10):3697-702
  • Kuendgen A, Strupp C, Aivado M, et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 2004;104(5):1266-9
  • Pilatrino C, Cilloni D, Messa E, et al. Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer 2005;104(1):101-9
  • Bug G, Ritter M, Wassmann B, et al. Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 2005;104(12):2717-25
  • Raffoux E, Chaibi P, Dombret H, Degos L. Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica 2005;90(7):986-8
  • Ryningen A, Stapnes C, Lassalle P, et al. A subset of patients with high-risk acute myelogenous leukemia shows improved peripheral blood cell counts when treated with the combination of valproic acid, theophylline and all-trans retinoic acid. Leuk Res 2009 (In Press)
  • Bellos F, Mahlknecht U. Valproic acid and all-trans retinoic acid: meta-analysis of a palliative treatment regimen in AML and MDS patients. Onkologie 2008;31(11):629-33
  • Lin RJ, Nagy L, Inoue S, et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391(6669):811-4
  • Mcmullin MF, Nugent E, Thompson A, et al. Prolonged molecular remission in PML-RARalpha-positive acute promyelocytic leukemia treated with minimal chemotherapy followed by maintenance including the histone deacetylase inhibitor sodium valproate. Leukemia 2005;19(9):1676-7
  • Petti MC, Fazi F, Gentile M, et al. Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood 2002;100(3):1065-7
  • Zhou DC, Kim SH, Ding W, et al. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002;99(4):1356-63
  • Warrell RP Jr, HE LZ Richon V, et al. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998;90(21):1621-5
  • Gore SD, Weng LJ, Zhai S, et al. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res 2001;7(8):2330-9
  • Byrd JC, Marcucci G, Parthun MR, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005;105(3):959-67
  • Klimek VM, Fircanis S, Maslak P, et al. Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 2008;14(3):826-32
  • Odenike OM, Alkan S, Sher D, et al. Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin Cancer Res 2008;14(21):7095-101
  • O'Connor OA, Heaney ML, Schwartz L, et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006;24(1):166-73
  • Garcia-Manero G, Yang H, Bueso-Ramos C, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008;111(3):1060-6
  • Giles F, Fischer T, Cortes J, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2006;12(15):4628-35
  • Gimsing P, Hansen M, Knudsen LM, et al. A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 2008;81(3):170-6
  • Gojo I, Jiemjit A, Trepel JB, et al. Phase 1 and pharmacological study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 2007;109(7):2781-90
  • Garcia-Manero G, Assouline S, Cortes J, et al. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 2008;112(4):981-9
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16(1):6-21
  • Fujita N, Takebayashi S, Okumura K, et al. Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 1999;19(9):6415-26
  • Berger J, Bird A. Role of MBD2 in gene regulation and tumorigenesis. Biochem Soc Trans 2005;33(Pt 6):1537-40
  • Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006;7(1):21-33
  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005;74:481-514
  • Link PA, Baer MR, James SR, et al. p53-inducible ribonucleotide reductase (p53R2/RRM2B) is a DNA hypomethylation-independent decitabine gene target that correlates with clinical response in myelodysplastic syndrome/acute myelogenous leukemia. Cancer Res 2008;68(22):9358-66
  • Kantarjian HM, O'Brien S, Shan J, et al. Update of the decitabine experience in higher risk myelodysplastic syndrome and analysis of prognostic factors associated with outcome. Cancer 2007;109(2):265-73
  • Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000;18(5):956-62
  • Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007;109(1):52-7
  • Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006;106(8):1794-803
  • Kantarjian HM, O'Brien S, Huang X, et al. Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer 2007;109(6):1133-7
  • Blum W, Klisovic RB, Hackanson B, et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 2007;25(25):3884-91
  • Cashen AF, Shah AK, Todt L, et al. Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Cancer Chemother Pharmacol 2008;61(5):759-66
  • Bruserud O, Stapnes C, Ersvaer E, et al. Histone deacetylase inhibitors in cancer treatment: a review of clinical toxicity and immunosuppresion, effects on normal hematopoiesis and modulation of gene expression in cancer cells. Curr Pharmaceut Biotechnol 2007;8(6):388-400
  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 2006;108(10):3271-9
  • Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002;20(10):2429-40
  • Sudan N, Rossetti JM, Shadduck RK, et al. Treatment of acute myelogenous leukemia with outpatient azacitidine. Cancer 2006;107(8):1839-43
  • Muller-Thomas C, Schuster T, Peschel C, Gotze KS. A limited number of 5-azacitidine cycles can be effective treatment in MDS. Ann Hematol 2009;88(3):213-9
  • Koschmieder S, Agrawal S, Radomska HS, et al. Decitabine and vitamin D3 differentially affect hematopoietic transcription factors to induce monocytic differentiation. Int J Oncol 2007;30(2):349-55
  • Soriano AO, Yang H, Faderl S, et al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 2007;110(7):2302-8
  • Raza A, Mehdi M, Mumtaz M, et al. Combination of 5-azacytidine and thalidomide for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Cancer 2008;113(7):1596-604
  • Nand S, Godwin J, Smith S, et al. Hydroxyurea, azacitidine and gemtuzumab ozogamicin therapy in patients with previously untreated non-M3 acute myeloid leukemia and high-risk myelodysplastic syndromes in the elderly: results from a pilot trial. Leuk Lymphoma 2008;49(11):2141-7
  • Shiohara M, Dawson MI, Hobbs PD, et al. Effects of novel RAR- and RXR-selective retinoids on myeloid leukemic proliferation and differentiation in vitro. Blood 1999;93(6):2057-66
  • Sakashita A, Kizaki M, Pakkala S, et al. 9-cis-retinoic acid: effects on normal and leukemic hematopoiesis in vitro. Blood 1993;81(4):1009-16
  • Dawson MI, Elstner E, Kizaki M, et al. Myeloid differentiation mediated through retinoic acid receptor/retinoic X receptor (RXR) not RXR/RXR pathway. Blood 1994;84(2):446-52
  • Clarke N, Germain P, Altucci L, Gronemeyer H. Retinoids: potential in cancer prevention and therapy. Expert Rev Mol Med 2004;6(25):1-23
  • Freemantle SJ, Spinella MJ, Dmitrovsky E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 2003;22(47):7305-15
  • Weston AD, Blumberg B, Underhill TM. Active repression by unliganded retinoid receptors in development: less is sometimes more. J Cell Biol 2003;161(2):223-8
  • Schlenk RF, Frohling S, Hartmann F, et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 2004;18(11):1798-803
  • Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer 2007;109(6):1114-24
  • Bassan R, Chiodini B, Lerede T, et al. Prolonged administration of all-trans retinoic acid in combination with intensive chemotherapy and G-CSF for adult acute myelogenous leukemia: single-centre pilot study in different risk groups. Hematol J 2002;3(4):193-200
  • Belhabri A, Thomas X, Wattel E, et al. All trans retinoic acid in combination with intermediate-dose cytarabine and idarubicin in patients with relapsed or refractory non promyelocytic acute myeloid leukemia: a phase II randomized trial. Hematol J 2002;3(1):49-55
  • Seiter K, Feldman EJ, Dorota Halicka H, et al. Clinical and laboratory evaluation of all-trans retinoic acid modulation of chemotherapy in patients with acute myelogenous leukaemia. Br J Haematol 2000;108(1):40-7
  • Milligan DW, Wheatley K, Littlewood T, et al. Fludarabine and cytosine are less effective than standard ADE chemotherapy in high-risk acute myeloid leukemia, and addition of G-CSF and ATRA are not beneficial: results of the MRC AML-HR randomized trial. Blood 2006;107(12):4614-22
  • Kuendgen A, Schmid M, Schlenk R, et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 2006;106(1):112-9
  • Ryningen A, Stapnes C, Paulsen K, et al. In vivo biological effects of ATRA in the treatment of AML. Expert Opin Investig Drugs 2008;17(11):1623-33
  • Tsai DE, Luger SM, Andreadis C, et al. A phase I study of bexarotene, a retinoic X receptor agonist, in non-M3 acute myeloid leukemia. Clin Cancer Res 2008;14(17):5619-25
  • Thomas X, Fenaux P, Dombret H, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) to increase efficacy of intensive sequential chemotherapy with etoposide, mitoxantrone and cytarabine (EMA) in previously treated acute myeloid leukemia: a multicenter randomized placebo-controlled trial (EMA91 Trial). Leukemia 1999;13(8):1214-20
  • Lowenberg B, Suciu S, Archimbaud E, et al. Use of recombinant GM-CSF during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia: final report of AML-11, a phase III randomized study of the Leukemia Cooperative Group of European Organisation for the Research and Treatment of Cancer and the Dutch Belgian Hemato-Oncology Cooperative Group. Blood 1997;90(8):2952-61
  • Thomas X, Raffoux E, Botton S, et al. Effect of priming with granulocyte-macrophage colony-stimulating factor in younger adults with newly diagnosed acute myeloid leukemia: a trial by the Acute Leukemia French Association (ALFA) Group. Leukemia 2007;21(3):453-61
  • Lowenberg B, van Putten W, Theobald M, et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 2003;349(8):743-52
  • Borthakur G, Kantarjian H, Wang X, et al. Treatment of core-binding-factor in acute myelogenous leukemia with fludarabine, cytarabine, and granulocyte colony-stimulating factor results in improved event-free survival. Cancer 2008;113(11):3181-5
  • Lo Coco F, Ammatuna E, Sanz MA. Current treatment of acute promyelocytic leukemia. Haematologica 2007;92(3):289-91
  • Zheng X, Seshire A, Ruster B, et al. Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells. Haematologica 2007;92(3):323-31
  • Kapahi P, Takahashi T, Natoli G, et al. Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem 2000;275(46):36062-6
  • Roboz GJ, Ritchie EK, Curcio T, et al. Arsenic trioxide and low-dose cytarabine in older patients with untreated acute myeloid leukemia, excluding acute promyelocytic leukemia. Cancer 2008;113(9):2504-11
  • Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002;82(2):373-428
  • Tam SW, Theodoras AM, Pagano M. Kip1 degradation via the ubiquitin-proteasome pathway. Leukemia 1997;11(Suppl 3):363-6
  • Zhang HG, Wang J, Yang X, et al. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 2004;23(11):2009-15
  • Acquaviva C, Bossis G, Ferrara P, et al. Multiple degradation pathways for Fos family proteins. Ann NY Acad Sci 2002;973:426-34
  • Dou QP, Smith DM, Daniel KG, Kazi A. Interruption of tumor cell cycle progression through proteasome inhibition: implications for cancer therapy. Prog Cell Cycle Res 2003;5:441-6
  • Nencioni A, Grunebach F, Patrone F, et al. Proteasome inhibitors: antitumor effects and beyond. Leukemia 2007;1(1):30-6
  • Vink J, Cloos J, Kaspers GJ. Proteasome inhibition as novel treatment strategy in leukaemia. Br J Haematol 2006;134(3):253-62
  • Horton TM, Pati D, Plon SE, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children's Oncology Group study. Clin Cancer Res 2007;13(5):1516-22
  • Cortes J, Thomas D, Koller C, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 2004;10(10):3371-6
  • Attar EC, De Angelo DJ, Supko JG, et al. Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin Cancer Res 2008;14(5):1446-54
  • Kraus M, Ruckrich T, Reich M, et al. Activity patterns of proteasome subunits reflect bortezomib sensitivity of hematologic malignancies and are variable in primary human leukemia cells. Leukemia 2006;21(1):84-92
  • Cheriyath V, Jacobs BS, Hussein MA. Proteasome inhibitors in the clinical setting: benefits and strategies to overcome multiple myeloma resistance to proteasome inhibitors. Drugs R D 2007;8(1):1-12
  • Yu D, Carroll M, Thomas-Tikhonenko A. p53 status dictates responses of B-lymphomas to monotherapy with proteasome inhibitors. Blood 2007;109(11):4936-43
  • Kreuter M, Steins M, Woelke K, et al. Downregulation of neuropilin-1 in patients with acute myeloid leukemia treated with thalidomide. Eur J Haematol 2007;79(5):392-7
  • Braun T, Carvalho G, Fabre C, et al. Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 2006;13(5):748-58
  • Steins MB, Padro T, Bieker R, et al. Efficacy and safety of thalidomide in patients with acute myeloid leukemia. Blood 2002;99(3):834-9
  • Cortes J, Kantarjian H, Albitar M, et al. A randomized trial of liposomal daunorubicin and cytarabine versus liposomal daunorubicin and topotecan with or without thalidomide as initial therapy for patients with poor prognosis acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2003;97(5):1234-41
  • Orlowski RZ. The ubiquitin proteasome pathway from bench to bedside. Hematology Am Soc Hematol Educ Program 2005;220-5
  • Cilloni D, Martinelli G, Messa F, et al. Nuclear factor kappa B as a target for new drug development in myeloid malignancies. Haematologica 2007;92(9):1224-9
  • Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001;98(8):2301-7
  • Melchert M, Williams C, List A. Remitting activity of lenalidomide in treatment-induced myelodysplastic syndrome. Leukemia 2007;21(7):1576-8
  • Thomas DA, Estey E, Giles FJ, et al. Single agent thalidomide in patients with relapsed or refractory acute myeloid leukaemia. Br J Haematol 2003;123(3):436-41
  • Barr P, Fu P, Lazarus H, et al. Antiangiogenic activity of thalidomide in combination with fludarabine, carboplatin, and topotecan for high-risk acute myelogenous leukemia. Leuk Lymphoma 2007;48(10):1940-9
  • Fehniger TA, Byrd JC, Marcucci G, et al. Single agent lenalidomide induces complete remission of acute myeloid leukemia in patients with isolated trisomy 13. Blood 2009;113(5):1002-5
  • Lancet JE, List AF, Moscinski LC. Treatment of deletion 5q acute myeloid leukemia with lenalidomide. Leukemia 2007;21(3):586-8
  • Mesa RA, Tefferi A, Li CY, Steensma DP. Hematologic and cytogenetic response to lenalidomide monotherapy in acute myeloid leukemia arising from JAK2(V617F) positive, del(5)(q13q33) myelodysplastic syndrome. Leukemia 2006;20(11):2063-4
  • Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer 2004;4(3):177-83
  • Hunter T, Cooper JA. Protein-tyrosine kinases. Annu Rev Biochem 1985;54:897-930
  • Schwartz S, Heinecke A, Zimmermann M, et al. Expression of the C-kit receptor (CD117) is a feature of almost all subtypes of de novo acute myeloblastic leukemia (AML), including cytogenetically good-risk AML, and lacks prognostic significance. Leuk Lymphoma 1999;34(1-2):85-94
  • Rizo A, Vellenga E, de Haan G, Schuringa JJ. Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet 2006;15 Spec No 2:R210-9
  • Heidel F, Cortes J, Rucker FG, et al. Results of a multicenter phase II trial for older patients with C-kit-positive acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS) using low-dose Ara-C and Imatinib. Cancer 2007;109(5):907-14
  • Walker AR, Komrokji RS, Ifthikharuddin J, et al. Phase I study of cladribine, cytarabine (Ara-C), granulocyte colony stimulating factor (G-CSF) (CLAG Regimen) and simultaneous escalating doses of imatinib mesylate (Gleevec) in relapsed/refractory AML. Leuk Res 2008;32(12):1830-6
  • Piccaluga PP, Malagola M, Rondoni M, et al. Imatinib mesylate in the treatment of newly diagnosed or refractory/resistant c-KIT positive acute myeloid leukemia. Results of an Italian Multicentric Phase II Study. Haematologica 2007;92(12):1721-2
  • Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006;108(10):3262-70
  • Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103(10):3669-76
  • Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105(1):54-60
  • Griswold IJ, Shen LJ, La Rosee, et al. Effects of MLN518, a dual FLT3 and KIT inhibitor, on normal and malignant hematopoiesis. Blood 2004;104(9):2912-8
  • DeAngelo DJ, Stone RM, Heaney ML, et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 2006;108(12):3674-81
  • Fiedler W, Serve H, Dohner H, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005;105(3):986-93
  • Hatfield KJ, Olsnes AM, Gjertsen BT, Bruserud O. Antiangiogenic therapy in acute myelogenous leukemia: targeting of vascular endothelial growth factor and interleukin 8 as possible antileukemic strategies. Curr Cancer Drug Targets 2005;5(4):229-48
  • Giles FJ, Stopeck AT, Silverman LR, et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003;102(3):795-801
  • Fiedler W, Mesters R, Tinnefeld H, et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003;102(8):2763-7
  • Mollgard L, Deneberg S, Nahi H, et al. The FLT3 inhibitor PKC412 in combination with cytostatic drugs in vitro in acute myeloid leukemia. Cancer Chemother Pharmacol 2008;62(3):439-48
  • Grant S, Roberts JD. The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist Updat 2003;6(1):15-26
  • Karp JE, Passaniti A, Gojo I, et al. Phase I and pharmacokinetic study of flavopiridol followed by 1-beta-D-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin Cancer Res 2005;11(23):8403-12
  • Karp JE, Smith BD, Levis MJ, et al. Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor-risk acute myelogenous leukemia. Clin Cancer Res 2007;13(15 Pt 1):4467-73
  • Huang XF, Luo SK, Xu J, et al. Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood 2008;111(5):2854-65
  • Ikezoe T, Yang J, Nishioka C, et al. A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 2007;6(6):1851-7
  • D'Alise AM, Amabile G, Iovino M, et al. Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. Mol Cancer Ther 2008;7(5):1140-9
  • Fiskus W, Wang Y, Joshi R, et al. Cotreatment with vorinostat enhances activity of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells. Clin Cancer Res 2008;14(19):6106-15
  • Walsby E, Walsh V, Pepper C, et al. Effects of the aurora kinase inhibitors AZD1152-HQPA and ZM447439 on growth arrest and polyploidy in acute myeloid leukemia cell lines and primary blasts. Haematologica 2008;93(5):662-9
  • Kojima K, Konopleva M, Tsao T, et al. Concomitant inhibition of Mdm2-p53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood 2008;112(7):2886-95
  • Yang J, Ikezoe T, Nishioka C, et al. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 2007;110(6):2034-40
  • Giles FJ, Cortes J, Jones D, et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 2007;109(2):500-2
  • Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 2006;6(4):321-30
  • Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008;105(40):15535-40
  • Didier C, Cavelier C, Quaranta M, et al. Evaluation of Polo-like kinase 1 inhibition on the G2/M checkpoint in acute myelocytic leukaemia. Eur J Pharmacol 2008;591(1-3):102-5
  • Greiner J, Bullinger L, Guinn BA, et al. Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res 2008;14(22):7161-6
  • Tolcher AW, Mita A, Lewis LD, et al. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol 2008;26(32):5198-203
  • Appels NM, Beijnen JH, Schellens JH. Development of farnesyl transferase inhibitors: a review. Oncologist 2005;10(8):565-78
  • Harousseau J, Martinelli G, Jedrzejczak W, et al. A randomized phase 3 study of tipifarnib compared to best supportive care (including hydroxyurea) in the treatment of newly dignosed acute myeloid leukemia (AML) in patients 70 years or older [abstract 439]. Blood 2007;110(11)
  • Harousseau JL, Lancet JE, Reiffers J, et al. A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 2007;109(12):5151-6
  • Lancet JE, Gojo I, Gotlib J, et al. A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 2007;109(4):1387-94
  • Karp JE, Smith BD, Gojo I, et al. Phase II trial of tipifarnib as maintenance therapy in first complete remission in adults with acute myelogenous leukemia and poor-risk features. Clin Cancer Res 2008;14(10):3077-82
  • Karp JE, Flatten K, Feldman EJ, et al. Active oral regimen for elderly adults with newly diagnosed acute myelogenous leukemia: A preclinical and phase I trial of the farnesyltransferase inhibitor tipifarnib (R115777, Zarnestra) combined with etoposide. Blood 2009 (In press)
  • Brandwein JM, Leber BF, Howson-Jan K, et al. A phase I study of tipifarnib combined with conventional induction and consolidation therapy for previously untreated patients with acute myeloid leukemia aged 60 years and over. Leukemia 2009 (In Press)
  • Harousseau JL. Farnesyltransferase inihibitors in hematologic malignancies. Blood Rev 2007;21(4):173-82
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12(1):9-22
  • Yee KW, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2006;12(17):5165-73
  • Recher C, Beyne-Rauzy O, Demur C, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 2005;105(6):2527-34
  • Lowenberg B, Davies F, Muller-Tidow C, et al. A multicenter phase II study of the aminopeptidase inhibitor CHR-297, in the treatment of elderly and/or previously treated patients with acute myeloid leukemia [abstract 961]. Blood 2008;112(11)
  • Steinbach D, Legrand O. ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia 2007;21(6):1172-6
  • Solary E, Drenou B, Campos L, et al. Quinine as a multidrug resistance inhibitor: a phase 3 multicentric randomized study in adult de novo acute myelogenous leukemia. Blood 2003;102(4):1202-10
  • Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002;100(4):1224-32
  • van der Holt B, Lowenberg B, Burnett AK, et al. The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis. Blood 2005;106(8):2646-54
  • Greenberg PL, Lee SJ, Advani R, et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 2004;22(6):1078-86
  • de Jonge-Peeters SD, Kuipers F, de Vries EG, Vellenga E. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol 2007;62(3):214-26
  • Bassan R, Lerede T, Borleri G, et al. Phase I trial with escalating doses of idarubicin and multidrug resistance reversal by short-course cyclosporin A, sequential high-dose cytosine arabinoside, and granulocyte colony-stimulating factor for adult patients with refractory acute leukemia. Haematologica 2002;87(3):257-63
  • List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001;98(12):3212-20
  • Gerrard G, Payne E, Baker RJ, et al. Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin and cytarabine. Haematologica 2004;89(7):782-90
  • Kornblau SM, Banker DE, Stirewalt D, et al. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study. Blood 2007;109(7):2999-3006
  • Kantarjian H, Gandhi V, Cortes J, et al. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood 2003;102(7):2379-86
  • Faderl S, Gandhi V, O'Brien S, et al. Results of a phase 1-2 study of clofarabine in combination with cytarabine (ara-C) in relapsed and refractory acute leukemias. Blood 2005;105(3):940-7
  • Faderl S, Verstovsek S, Cortes J, et al. Clofarabine and cytarabine combination as induction therapy for acute myeloid leukemia (AML) in patients 50 years of age or older. Blood 2006;108(1):45-51
  • Karp JE, Ricklis RM, Balakrishnan K, et al. A phase 1 clinical-laboratory study of clofarabine followed by cyclophosphamide for adults with refractory acute leukemias. Blood 2007;110(6):1762-9
  • Faderl S, Ferrajoli A, Wierda W, et al. Clofarabine combinations as acute myeloid leukemia salvage therapy. Cancer 2008;113(8):2090-6
  • Faderl S, Ravandi F, Huang X, et al. A randomized study of clofarabine versus clofarabine plus low-dose cytarabine as front-line therapy for patients aged 60 years and older with acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2008;112(5):1638-45
  • Holowiecki J, Grosicki S, Robak T, et al. Addition of cladribine to daunorubicin and cytarabine increases complete remission rate after a single course of induction treatment in acute myeloid leukemia. Multicenter, phase III study. Leukemia 2004;18(5):989-97
  • Wierzbowska A, Robak T, Pluta A, et al. Cladribine combined with high doses of arabinoside cytosine, mitoxantrone, and G-CSF (CLAG-M) is a highly effective salvage regimen in patients with refractory and relapsed acute myeloid leukemia of the poor risk: a final report of the Polish Adult Leukemia Group. Eur J Haematol 2008;80(2):115-26
  • Swords R, Giles F. Troxacitabine in acute leukemia. Hematology 2007;12(3):219-27
  • Roboz GJ, Giles FJ, Ritchie EK, et al. Phase I/II study of continuous-infusion troxacitabine in refractory acute myeloid leukemia. J Clin Oncol 2007;25(1):10-5
  • Dent P, Grant S. Irofulven: resurgence for alkylating therapy in cancer? Cancer Biol Ther 2004;3(11):1143-4
  • Caporaso P, Turriziani M, Venditti A, et al. Novel role of triazenes in haematological malignancies: pilot study of Temozolomide, Lomeguatrib and IL-2 in the chemo-immunotherapy of acute leukaemia. DNA Repair (Amst) 2007;6(8):1179-86
  • Brandwein JM, Yang L, Schimmer AD, et al. A phase II study of temozolomide therapy for poor-risk patients aged ≥ 60 years with acute myeloid leukemia: low levels of MGMT predict for response. Leukemia 2007;21(4):821-4
  • Giles F, Rizzieri D, Karp J, et al. Cloretazine (VNP40101M), a novel sulfonylhydrazine alkylating agent, in patients age 60 years or older with previously untreated acute myeloid leukemia. J Clin Oncol 2007;25(1):25-31
  • Kantarjian HM, Beran M, Ellis A, et al. Phase I study of Topotecan, a new topoisomerase I inhibitor, in patients with refractory or relapsed acute leukemia. Blood 1993;81(5):1146-51
  • Vey N, Kantarjian H, Tran H, et al. Phase I and pharmacologic study of 9-aminocamptothecin colloidal dispersion formulation in patients with refractory or relapsed acute leukemia. Ann Oncol 1999;10(5):577-83
  • Rowinsky EK, Kaufmann SH, Baker SD, et al. A phase I and pharmacological study of topotecan infused over 30 minutes for five days in patients with refractory acute leukemia. Clin Cancer Res 1996;2(12):1921-30
  • Cooper BW, Veal GJ, Radivoyevitch T, et al. A phase I and pharmacodynamic study of fludarabine, carboplatin, and topotecan in patients with relapsed, refractory, or high-risk acute leukemia. Clin Cancer Res 2004;10(20):6830-9
  • Vey N, Kantarjian H, Beran M, et al. Combination of topotecan with cytarabine or etoposide in patients with refractory or relapsed acute myeloid leukemia: results of a randomized phase I/II study. Invest New Drugs 1999;17(1):89-95
  • Pagano L, Mele L, Voso MT, et al. The association of topotecan and cytarabine in the treatment of secondary or relapsed acute myeloid leukemia. Haematologica 2001;86(4):440-1
  • Cooper BW, Donaher E, Lazarus HM, et al. A phase I and pharmacodynamic study of sequential topotecan and etoposide in patients with relapsed or refractory acute myelogenous and lymphoblastic leukemia. Leuk Res 2003;27(1):35-44
  • Giles FJ, Cortes JE, Kantarjian HM, et al. A fludarabine, topotecan, and cytarabine regimen is active in patients with refractory acute myelogenous leukemia. Leuk Res 2004;28(4):353-7
  • Weihrauch MR, Staib P, Seiberlich B, et al. Phase I/II clinical study of topotecan and cytarabine in patients with myelodysplastic syndrome, chronic myelomonocytic leukemia and acute myeloid leukemia. Leuk Lymphoma 2004;45(4):699-704
  • Lee ST, Jang JH, Suh HC, et al. Idarubicin, cytarabine, and topotecan in patients with refractory or relapsed acute myelogenous leukemia and high-risk myelodysplastic syndrome. Am J Hematol 2001;68(4):237-45
  • Crump M, Lipton J, Hedley D, et al. Phase I trial of sequential topotecan followed by etoposide in adults with myeloid leukemia: a National Cancer Institute of Canada Clinical Trials Group Study. Leukemia 1999;13(3):343-7
  • Estey EH, Thall PF, Cortes JE, et al. Comparison of idarubicin + ara-C-, fludarabine + ara-C-, and topotecan + ara-C-based regimens in treatment of newly diagnosed acute myeloid leukemia, refractory anemia with excess blasts in transformation, or refractory anemia with excess blasts. Blood 2001;98(13):3575-83
  • Bolanos-Meade J, Guo C, Gojo I, Karp JE. A phase II study of timed sequential therapy of acute myelogenous leukemia (AML) for patients over the age of 60: two cycle timed sequential therapy with topotecan, ara-C and mitoxantrone in adults with poor-risk AML. Leuk Res 2004;28(6):571-7
  • Stock W, Undevia SD, Bivins C, et al. A phase I and pharmacokinetic study of XK469R (NSC 698215), a quinoxaline phenoxypropionic acid derivative, in patients with refractory acute leukemia. Invest New Drugs 2008;26(4):331-8
  • Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007;6(5):349-56
  • Pagano L, Fianchi L, Caira M, et al. The role of Gemtuzumab Ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene 2007;26(25):3679-90
  • Tallman MS. Treatment of relapsed or refractory acute promyelocytic leukemia. Best Pract Res Clin Haematol 2007;20(1):57-65
  • Gleissner B, Schlenk R, Bornhauser M, Berdel WE. Gemtuzumab ozogamicin (mylotarg) for the treatment of acute myeloid leukemia: ongoing trials. Onkologie 2007;30(12):657-62
  • Candoni A, Martinelli G, Toffoletti E, et al. Gemtuzumab-ozogamicin in combination with fludarabine, cytarabine, idarubicin (FLAI-GO) as induction therapy in CD33-positive AML patients younger than 65 years. Leuk Res 2008;32(12):1800-8
  • Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol 2005;23(18):4110-6
  • Karp JE, Gojo I, Pili R, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004;10(11):3577-85
  • Zahiragic L, Schliemann C, Bieker R, et al. Bevacizumab reduces VEGF expression in patients with relapsed and refractory acute myeloid leukemia without clinical antileukemic activity. Leukemia 2007;21(6):1310-2
  • El-Shami K, Smith BD. Immunotherapy for myeloid leukemias: current status and future directions. Leukemia 2008;22(9):1658-64
  • Bruserud O, Ersvaer E, Olsnes A, Gjertsen BT. Anticancer immunotherapy in combination with proapoptotic therapy. Curr Cancer Drug Targets 2008;8(8):666-75
  • Brune M, Castaigne S, Catalano J, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 2006;108(1):88-96
  • Baer MR, George SL, Caligiuri MA, et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B Study 9720. J Clin Oncol 2008;26(30):4934-9
  • Lodewyck T, Cornelissen JJ. Allogeneic stem cell transplantation in acute myeloid leukemia: a risk-adapted approach. Blood Rev 2008;22(6):293-302
  • Zweegman S, Janssen JJ, Lokhorst HM. Immune-modulatory effects of bortezomib in GVHD. Leuk Lymphoma 2007;48(5):853-4
  • Tamm I. Antisense therapy in malignant diseases: status quo and quo vadis? Clin Sci (Lond) 2006;110(4):427-42
  • Freireich EJ, Kantarjian H, Garcia-Manero G, et al. Phase II study of EL625, a p53 antisense oligonucleotide, and chemotherapy in refractory and relapsed acute myelogenous leukemia (AML). J Clin Oncol 2005;23(No 16S)
  • Luo CY, Tang JY, Wang YP. Homoharringtonine: a new treatment option for myeloid leukemia. Hematology 2004;9(4):259-70
  • Jin J, Jiang DZ, Mai WY, et al. Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novo acute myeloid leukemia. Leukemia 2006;20(8):1361-7
  • Zhang WG, Wang FX, Chen YX, et al. Combination chemotherapy with low-dose cytarabine, homoharringtonine, and granulocyte colony-stimulating factor priming in patients with relapsed or refractory acute myeloid leukemia. Am J Hematol 2008;83(3):185-8
  • Yu J, Zhang L. Apoptosis in human cancer cells. Curr Opin Oncol 2004;16(1):19-24
  • Trudel S, Li ZH, Rauw J, et al. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 2007;109(12):5430-8
  • Schimmer AD, O'Brien S, Kantarjian H, et al. A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 2008;14(24):8295-301
  • Kamb A, Wee S, Lengauer C. Why is cancer drug discovery so difficult? Nat Rev Drug Discov 2007;6(2):115-20
  • Stone RM. Novel therapeutic agents in acute myeloid leukemia. Exp Hematol 2007;35(4 Suppl 1):163-6
  • Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood 2005;106(4):1154-63
  • Mrozek K, Marcucci G, Paschka P, et al. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007;109(2):431-48
  • Raponi M, Harousseau JL, Lancet JE, et al. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 2007;13(7):2254-60
  • Norgaard JM, Langkjer ST, Palshof T, et al. Pretreatment leukaemia cell drug resistance is correlated to clinical outcome in acute myeloid leukaemia. Eur J Haematol 2001;66(3):160-7
  • Stone RM, O'Donnell MR, Sekeres MA. Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2004;98-117
  • Thomas X, Dombret H. Timed-sequential chemotherapy as induction and/or consolidation regimen for younger adults with acute myelogenous leukemia. Hematology 2007;12(1):15-28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.