583
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Recent Advancements in Reducing the Off-Target Effect of CRISPR-Cas9 Genome Editing

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 21-28 | Received 07 Jul 2023, Accepted 16 Jan 2024, Published online: 18 Jan 2024

References

  • Kato-Inui T, Takahashi G, Hsu S, Miyaoka Y. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Res. 2018;46(9):4677–4688. doi:10.1093/nar/gky264
  • Bravo JPK, Liu M-S, McCool RS, Jung K, Johnson KA, Taylor DW. Structural basis for mismatch surveillance by CRISPR/Cas9. bioRxiv. 2021;603:343–347.
  • Zheng N, Li L, Wang X. Molecular mechanisms, off-target activities, and clinical. Clin Transl Med. 2020;10(1):412–426. doi:10.1002/ctm2.34
  • Kotagama OW, Jayasinghe CD, Abeysinghe T. Era of genomic medicine: a narrative review on CRISPR technology as a potential therapeutic tool for human diseases. Biomed Res Int. 2019;201:1–15. doi:10.1155/2019/1369682
  • Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-cas-mediated genome editing. Cells. 2020;9(7):1–23. doi:10.3390/cells9071608
  • Mengstie MA, Wondimu BZ. Mechanism and applications of crispr/ cas-9-mediated genome editing. Biol Targets Ther. 2021;15:353–361. doi:10.2147/BTT.S326422
  • Janik E, Niemcewicz M, Ceremuga M, Krzowski L. Various aspects of a gene editing system — CRISPR – cas9. Int J Mol Sci. 2020;2020:1–20.
  • Xue C, Sashital DG, State I. Mechanisms of type I-E and I-F CRISPR-Cas systems in Enterobacteriaceae. EcoSal Plus. 2020;8(2):1–38.
  • Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371(1707):20150496. doi:10.1098/rstb.2015.0496
  • Chavez M, Chen X, Finn PB, Qi LS. Advances in CRISPR therapeutics. Nat Rev. 2023;19(9):1–14.
  • Richter H, Charpentier E, Randau L, Randau L. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol Rev. 2015;39:442–463. doi:10.1093/femsre/fuv019
  • Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4(11):e264. doi:10.1038/mtna.2015.37
  • Corsi GI, Qu K, Alkan F, Pan X, Luo Y, Gorodkin J. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. Nat Commun. 2022;13(1):3006. doi:10.1038/s41467-022-30515-0
  • Guo C, Ma X, Gao F, Guo Y, Wang K. Off-target effects in CRISPR / Cas9 gene editing. Front Bioeng Biotechnol. 2023;11:1–11.
  • Javaid N, Choi S. CRISPR / cas system and factors affecting its precision and ef fi ciency. Front Cell Dev Biol. 2021;9(November):1–25.
  • Tycko J, Myer VE, Hsu PD, Jolla L. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2017;63(3):355–370. doi:10.1016/j.molcel.2016.07.004
  • Baghini SS, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to improve CRISPR / Cas9 knockout ef fi ciency: special focus on human and animal. Front Bioeng Biotechnol. 2021;9:775309. doi:10.3389/fbioe.2021.775309
  • Ryan DE, Taussig D, Steinfeld I, et al. Improving CRISPR – cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 2018;46(2):792–803. doi:10.1093/nar/gkx1199
  • Zuo Z, Babu K, Ganguly C, Zolekar A, Newsom S. Rational engineering of CRISPR-Cas9 nuclease to attenuate position-dependent off-target effects. Cris J. 2022;5(2):329–340. doi:10.1089/crispr.2021.0076
  • Zhang D, Zhang H, Li T, Chen K, Qiu J, Gao C. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol. 2017;18(191):1–7. doi:10.1186/s13059-017-1325-9
  • Kulcsár PI, Tálas A, Huszár K, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 2017;18(109):1–17. doi:10.1186/s13059-017-1318-8
  • Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 variants with undetectable genome- wide off-targets. Nature. 2016;529(7587):490–495. doi:10.1038/nature16526
  • Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ. Strategies to overcome the main challenges of the use of CRISPR / Cas9 as a replacement for cancer therapy. Mol Cancer. 2022;24(64):1–30.
  • Topkar VV, Zheng Z, Joung JK. Broadening staphylococcus aureus Cas9 targeting range by modifying PAM recognition. Nature Biotechnol. 2016;33(12):1293–1298.
  • Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 2015;16(257):1–10. doi:10.1186/s13059-015-0817-8
  • Xue C, Greene EC, Biophysics M. DNA repair pathway choices in CRISPR-Cas9 mediated genome editing. Trends Genet. 2022;37(7):639–656. doi:10.1016/j.tig.2021.02.008
  • Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2020;576(7785):149–157. doi:10.1038/s41586-019-1711-4
  • Matsoukas IG. Prime editing: genome editing for rare genetic diseases without double-strand breaks or donor DNA. Front Genet. 2020;11(528):1–6. doi:10.3389/fgene.2020.00528
  • Schole J, Harrison PT, Harrison PT. Prime editing-an update on the field. Gene Ther. 2021;28(7):396–401. doi:10.1038/s41434-021-00263-9
  • Lee J, Lim K, Chung E, Cho S, Kim A, Mok YG. Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nat Commun. 2023;14(1):1786. doi:10.1038/s41467-023-37507-8
  • Marzec M, Br A. Prime editing: a new way for genome editing. Trends Cell Biol. 2020;xx(xx):1–3.
  • Kantor A, Mcclements ME, MacLaren R. CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci. 2020;21(6240):1–21. doi:10.3390/ijms21176240
  • Huang Z, Liu G. Current advancement in the application of prime editing. Front Bioeng Biotechnol. 2023;11:1039315. doi:10.3389/fbioe.2023.1039315
  • Godbout K, Tremblay JP. Prime editing for human gene therapy: where are we now ? Cell. 2023;12(4):536. doi:10.3390/cells12040536
  • Marino ND, Pinilla-redondo R, Csörgő B, Bondy-denomy J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods. 2021;17(5):471–479. doi:10.1038/s41592-020-0771-6
  • Forsberg KJ. Anti-CRISPR discovery: using magnets to find needles in haystacks. J Mol Biol. 2023;435(7):167952. doi:10.1016/j.jmb.2023.167952
  • Pinilla-redondo R, Shehreen S, Marino ND, et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat Commun. 2020;11(1):5652. doi:10.1038/s41467-020-19415-3
  • Zhang F, Song G, Tian Y. Anti ‐ CRISPRs: the natural inhibitors for CRISPR ‐ Cas systems. Anim Model Exp Med. 2019;2(2):69–75. doi:10.1002/ame2.12069
  • Sun W, Zhao X, Wang J, et al. Anti-CRISPR AcrIIC5 is a dsDNA mimic that inhibits type II-C Cas9 effectors by blocking PAM recognition. Nucleic Acids Res. 2023;51(4):1984–1995. doi:10.1093/nar/gkad052
  • Zhang Y, Marchisio MA, Marchisio MA. Type II anti-CRISPR proteins as a new tool for synthetic biology. RNA Biol. 2021;18(8):1085–1098. doi:10.1080/15476286.2020.1827803
  • Nuclease C, Huang X, Yang D, Zhang J, Xu J, Chen YE. Recent advances in improving gene-editing specificity through CRISPR–Cas9 nuclease engineering. Cells. 2022;11(14):2186. doi:10.3390/cells11142186
  • Kulcsár PI, Tálas A, Welker E. SuperFi-Cas9 exhibits extremely high fidelity but reduced activity in mammalian cells. bioRxiv. 2022;2022:493683.
  • Ferdousy SCB. An assessment of genome-editing efficiency of a newly developed Cas9 in. microPublication Biol. 2022;10:17912.
  • Matson AW, Hosny N, Swanson ZA, Hering BJ, Burlak C. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR / Cas9 gene editing system. PLoS One. 2019;14:12.
  • Hahn F, Nekrasov V. CRISPR / Cas precision: do we need to worry about off-targeting in plants ? Plant Cell Rep. 2019;38(4):437–441. doi:10.1007/s00299-018-2355-9
  • Aquino-jarquin G. Current advances in overcoming obstacles of CRISPR / Cas9 off-target genome editing. Mol Genet Metab. 2021;134(1–2):77–86. doi:10.1016/j.ymgme.2021.08.002
  • Jain S, Xun G, Abesteh S, et al. Precise regulation of Cas9-mediated genome engineering by an anti-CRISPR based inducible CRISPR controllers. ACS Synth Biol. 2021;10(6):1320–1327. doi:10.1021/acssynbio.0c00548
  • Casini A, Olivieri M, Petris G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36(3):265–271. doi:10.1038/nbt.4066