97
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Gene Expression, Morphology, and Electrophysiology During the Dynamic Development of Human Induced Pluripotent Stem Cell-Derived Atrial- and Ventricular-Like Cardiomyocytes

, , , , , , & show all
Pages 115-127 | Received 17 Nov 2023, Accepted 23 Apr 2024, Published online: 09 May 2024

References

  • Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107(21):2733–2740. doi:10.1161/01.CIR.0000068356.38592.68
  • Yazawa M, Hsueh B, Jia X, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in timothy syndrome. Nature. 2011;471(7337):230–234. doi:10.1038/nature09855
  • Nunes SS, Miklas JW, Liu J, et al. Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nature Methods. 2013;10(8):781–787. doi:10.1038/nmeth.2524
  • Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later: for cardiac applications. Circula res. 2017;120(12):1958–1968. doi:10.1161/CIRCRESAHA.117.311080
  • Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2013;31(5):829–837. doi:10.1002/stem.1331
  • Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circula res. 2014;114(3):511–523. doi:10.1161/CIRCRESAHA.114.300558
  • Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circula res. 2009;104(4):30–41. doi:10.1161/CIRCRESAHA.108.192237
  • Artesi M, Bontems S, Göbbels P, et al. A recurrent mutation at position 26340 of SARS-CoV-2 is associated with failure of the E gene quantitative reverse transcription-PCR utilized in a commercial dual-target diagnostic assay. J Clin Microbiol. 2020;58(10):1595. doi:10.1128/JCM.01598-20
  • Rossini M, Filadi R. Sarcoplasmic reticulum-mitochondria kissing in cardiomyocytes: ca(2+. ATP Undis Sec Front Deve Bio. 2020;8:532. doi:10.3389/fcell.2020.00532
  • Tu C, Chao BS, Wu JC. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circula res. 2018;123(5):512–514. doi:10.1161/CIRCRESAHA.118.313472
  • Yang X, Rodriguez ML, Leonard A, et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 2019;13(4):657–668. doi:10.1016/j.stemcr.2019.08.013
  • Lumley SF, Donnell OD, Stoesser NE, et al. Antibody status and incidence of SARS-CoV-2 infection in health care workers. N Engl J Med. 2021;384(6):533–540. doi:10.1056/NEJMoa2034545
  • Forte M, Marchitti S, Di Nonno F, et al. NPPA/atrial natriuretic peptide is an extracellular modulator of autophagy in the heart. Autophagy. 2023;19(4):1087–1099. doi:10.1080/15548627.2022.2115675
  • Xiao S, Shimura D, Baum R, et al. Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias. J Clin Invest. 2020;130(9):4858–4870. doi:10.1172/JCI134682
  • Zhang Q, Jiang J, Han P, et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 2011;21(4):579–587. doi:10.1038/cr.2010.163
  • Li Y, Chang Y, Li X, et al. RAD-deficient human cardiomyocytes develop hypertrophic cardiomyopathy phenotypes due to calcium dysregulation. Front Cell Develop Biol. 2020;8:585879. doi:10.3389/fcell.2020.585879
  • El-Battrawy I, Lan H, Cyganek L, et al. Modeling short qt syndrome using human-induced pluripotent stem cell-derived cardiomyocytes. J American Heart Assoc. 2018;7(7):e007394. doi:10.1161/JAHA.117.007394
  • Liu F, Fang Y, Hou X, et al. Enrichment differentiation of human induced pluripotent stem cells into sinoatrial node-like cells by combined modulation of BMP, FGF, and RA signaling pathways. Stem Cell Res Ther. 2020;11(1):284. doi:10.1186/s13287-020-01794-5
  • Ronaldson-Bouchard K, Ma SP, Yeager K, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556(7700):239–243. doi:10.1038/s41586-018-0016-3
  • Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circula res. 2012;111(3):344–358. doi:10.1161/CIRCRESAHA.110.227512
  • Yanagi K, Takano M, Narazaki G, et al. Hyperpolarization-activated cyclic nucleotide-gated channels and T-type calcium channels confer automaticity of embryonic stem cell-derived cardiomyocytes. Stem Cells. 2007;25(11):2712–2719. doi:10.1634/stemcells.2006-0388
  • Wang K, Terrenoire C, Sampson KJ, et al. Biophysical properties of slow potassium channels in human embryonic stem cell derived cardiomyocytes implicate subunit stoichiometry. J Physiol. 2011;589(24):6093–6104. doi:10.1113/jphysiol.2011.220863
  • Fu JD, Jiang P, Rushing S, Liu J, Chiamvimonvat N, Li RA. Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells Develop. 2010;19(6):773–782. doi:10.1089/scd.2009.0184
  • Gerbin KA, Grancharova T, Donovan-Maiye RM, et al. Cell states beyond transcriptomics: integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. Cell Systems. 2021;12(6):670–687. doi:10.1016/j.cels.2021.05.001
  • Adamcova M, Skarkova V, Seifertova J, Rudolf E. Cardiac troponins are among targets of doxorubicin-induced cardiotoxicity in hiPCS-CMs. Int J Mol Sci. 2019;20(11):2638. doi:10.3390/ijms20112638
  • Fijnvandraat A. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardio Rese. 2003;58(2):399–409. doi:10.1016/s0008-6363(03)00282-7
  • Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10):1260–1272. doi:10.1016/j.bbalip.2017.07.006
  • Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20(3):137–155. doi:10.1038/s41580-018-0085-z
  • Peinkofer G, Burkert K, Urban K, et al. From early embryonic to adult stage: comparative study of action potentials of native and pluripotent stem cell-derived cardiomyocytes. Stem Cells Develop. 2016;25(19):1397–1406. doi:10.1089/scd.2016.0073
  • Clark KL, Ganesan S, Keating AF. Impact of toxicant exposures on ovarian gap junctions. Reprod Toxicol. 2018;81:140–146. doi:10.1016/j.reprotox.2018.07.087
  • Binas S, Knyrim M, Hupfeld J, et al. miR-221 and −222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density. Cell Mol Life Sci. 2019;77(5):903–918. doi:10.1007/s00018-019-03217-y
  • Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM. Thyroid hormone action in postnatal heart development. Stem Cell Res. 2014;13(3):582–591. doi:10.1016/j.scr.2014.07.001
  • Parikh SS, Blackwell DJ, Gomez-Hurtado N, et al. Thyroid and glucocorticoid hormones promote functional t-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circula res. 2017;121(12):1323–1330. doi:10.1161/CIRCRESAHA.117.311920
  • Menon A, Hong L, Savio-Galimberti E, et al. Electrophysiologic and molecular mechanisms of a frameshift NPPA mutation linked with familial atrial fibrillation. J Mol Cell Cardiol. 2019;132:24–35. doi:10.1016/j.yjmcc.2019.05.004