253
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

MicroRNA-182-5p Inhibits Hypertrophic Scar Formation by Inhibiting the Proliferation and Migration of Fibroblasts via SMAD4 Pathway

&
Pages 565-580 | Received 21 Nov 2022, Accepted 22 Feb 2023, Published online: 08 Mar 2023

References

  • Fawcett S, Al Kassas R, M Dykes I, et al. A time to heal: microRNA and circadian dynamics in cutaneous wound repair. Clin Sci. 2022;136(8):579–597. doi:10.1042/CS20220011
  • Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science. 2017;355(6326):748–752. doi:10.1126/science.aai8792
  • Kim S, Choi TH, Liu W, et al. Update on scar management: guidelines for treating Asian patients. Plast Reconstr Surg. 2013;132(6):1580–1589. doi:10.1097/PRS.0b013e3182a8070c
  • Marneros AG, Norris JEC, Watanabe S, Reichenberger E, Olsen BR. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol. 2004;122(5):1126–1132. doi:10.1111/j.0022-202X.2004.22327.x
  • Akaishi S, Ogawa R, Hyakusoku H. Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses. 2008;71(1):32–38. doi:10.1016/j.mehy.2008.01.032
  • Chen Z, Zhou L, Won T, et al. Characterization of CD45RO+ memory T lymphocytes in keloid disease. Br J Dermatol. 2018;178(4):940–950. doi:10.1111/bjd.16173
  • Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen. 2010;18(2):139–153. doi:10.1111/j.1524-475X.2009.00553.x
  • Huang J, Zhou X, Wang W, et al. Combined analyses of RNA-sequence and Hi-C along with GWAS loci-A novel approach to dissect keloid disorder genetic mechanism. PLoS Genet. 2022;18:e1010168. doi:10.1371/journal.pgen.1010168
  • Chen L, Su Y, Yin B, et al. LARP6 regulates keloid fibroblast proliferation, invasion, and ability to synthesize collagen. J Invest Dermatol. 2022;142:2395–2405.e2397. doi:10.1016/j.jid.2022.01.028
  • Liang Y, Zhou R, Fu X, Wang C, Wang D. HOXA5 counteracts the function of pathological scar-derived fibroblasts by partially activating p53 signaling. Cell Death Dis. 2021;12(1):40. doi:10.1038/s41419-020-03323-x
  • Limandjaja GC, Belien JM, Scheper RJ, Niessen FB, Gibbs S. Hypertrophic and keloid scars fail to progress from the CD 34 − /α-smooth muscle actin (α- SMA) + immature scar phenotype and show gradient differences in α- SMA and p16 expression. Br J Dermatol. 2020;182(4):974–986. doi:10.1111/bjd.18219
  • Lv W, Ren Y, Hou K, et al. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics. 2020;12(1):183. doi:10.1186/s13148-020-00981-8
  • Lv W, Liu S, Zhang Q, et al. Circular RNA CircCOL5A1 sponges the MiR-7-5p/Epac1 axis to promote the progression of keloids through regulating PI3K/Akt signaling pathway. Front Cell Dev Biol. 2021;9:626027. doi:10.3389/fcell.2021.626027
  • Zhao J, Zhong A, Friedrich EE, et al. S100A12 induced in the epidermis by reduced hydration activates dermal fibroblasts and causes dermal fibrosis. J Invest Dermatol. 2017;137(3):650–659. doi:10.1016/j.jid.2016.10.040
  • Rang Z, Wang Z-Y, Pang Q-Y, et al. MiR-181a targets PHLPP2 to augment AKT signaling and regulate proliferation and apoptosis in human keloid fibroblasts. Cell Physiol Biochem. 2016;40(3–4):796–806. doi:10.1159/000453139
  • Yu X, Li Z, Chan MTV, Wu W. K. microRNA deregulation in keloids: an opportunity for clinical intervention? Cell Prolif. 2015;48(6):626–630. doi:10.1111/cpr.12225
  • Wei Q, Wang Y, Ma K, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells facilitate diabetic wound healing through MiR-17-5p-mediated enhancement of angiogenesis. Stem Cell Rev Rep. 2022;18(3):1025–1040. doi:10.1007/s12015-021-10176-0
  • Ma C, Qi X, Wei Y-F, et al. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioactive Mater. 2023;19:139–154. doi:10.1016/j.bioactmat.2022.03.042
  • Xia W, Li M, Jiang X, et al. Young fibroblast-derived exosomal microRNA-125b transfers beneficial effects on aged cutaneous wound healing. J Nanobiotechnology. 2022;20(1):144. doi:10.1186/s12951-022-01348-2
  • Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther. 2022;13(1):24. doi:10.1186/s13287-021-02697-9
  • Kashiyama K, Mitsutake N, Matsuse M, et al. miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol. 2012;132(6):1597–1604. doi:10.1038/jid.2012.22
  • Gallant-Behm CL, Piper J, Lynch JM, et al. A MicroRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J Invest Dermatol. 2019;139(5):1073–1081. doi:10.1016/j.jid.2018.11.007
  • Xu J-H, Zhao J-X, Jiang M-Y, et al. MiR-193 promotes cell proliferation and invasion by ING5/PI3K/AKT pathway of triple-negative breast cancer. Eur Rev Med Pharmacol Sci. 2020;24(6):3122–3129. doi:10.26355/eurrev_202003_20679
  • Sun J, Liu X, Shen C, Zhang W, Niu Y. Adiponectin receptor agonist AdipoRon blocks skin inflamm-ageing by regulating mitochondrial dynamics. Cell Prolif. 2021;54(12):e13155. doi:10.1111/cpr.13155
  • Sun J, Zhao H, Shen C, et al. Tideglusib promotes wound healing in aged skin by activating PI3K/Akt pathway. Stem Cell Res Ther. 2022;13(1):269. doi:10.1186/s13287-022-02949-2
  • de Souza TR, Souza AK, Garcia SB, et al. Photobiomodulation increases viability in full-thickness grafts in rats submitted to nicotine. Lasers Surg Med. 2020;52(5):449–455. doi:10.1002/lsm.23155
  • Demir CY, Ersoz ME, Erten R, et al. Comparison of enalapril, candesartan and intralesional triamcinolone in reducing hypertrophic scar development: an experimental study. Aesthetic Plast Surg. 2018;42(2):352–361. doi:10.1007/s00266-018-1073-6
  • Toss MS, Miligy IM, Gorringe KL, et al. Geometric characteristics of collagen have independent prognostic significance in breast ductal carcinoma in situ: an image analysis study. Mod Pathol. 2019;32(10):1473–1485. doi:10.1038/s41379-019-0296-7
  • Zhang Q, Shi L, He H, et al. Down-regulating scar formation by microneedles directly via a mechanical communication pathway. ACS Nano. 2022;16(7):10163–10178. doi:10.1021/acsnano.1c11016
  • Sun Y, Wang Q, Zhang Y, et al. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. J Hepatol. 2020;73(3):603–615. doi:10.1016/j.jhep.2020.03.050
  • Lu J-T, Tan -C-C, Wu X-R, et al. FOXF2 deficiency accelerates the visceral metastasis of basal-like breast cancer by unrestrictedly increasing TGF-β and miR-182-5p. Cell Death Differ. 2020;27(10):2973–2987. doi:10.1038/s41418-020-0555-7
  • Wang W, Hu W, Wang Y, et al. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA. Mol Cancer. 2020;19(1):18. doi:10.1186/s12943-020-1132-x
  • Sinnberg T, Levesque MP, Krochmann J, et al. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol Cancer. 2018;17(1):59. doi:10.1186/s12943-018-0773-5
  • Liu X, Xie P, Hao N, et al. HIF-1–regulated expression of calreticulin promotes breast tumorigenesis and progression through Wnt/β-catenin pathway activation. Proc Natl Acad Sci USA. 2021;118(44):1. doi:10.1073/pnas.2109144118
  • Cao M-Q, You A-B, Zhu X-D, et al. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol. 2018;11(1):12. doi:10.1186/s13045-018-0555-y
  • Hogdall D, O’Rourke CJ, Larsen FO, et al. Whole blood microRNAs capture systemic reprogramming and have diagnostic potential in patients with biliary tract cancer. J Hepatol. 2022;2022:3. doi:10.1016/j.jhep.2022.05.036
  • Cao M, Isaac R, Yan W, et al. Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nat Cell Biol. 2022;24(6):954–967. doi:10.1038/s41556-022-00919-7
  • Li J, Yao Y, Wang Y, et al. Modulation of the crosstalk between Schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv Mater. 2022;34(46):e2202513. doi:10.1002/adma.202202513
  • Komoll R-M, Hu Q, Olarewaju O, et al. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol. 2021;74(1):122–134. doi:10.1016/j.jhep.2020.07.039
  • de Abreu RC, Fernandes H, da Costa Martins PA, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol. 2020;17(11):685–697. doi:10.1038/s41569-020-0389-5
  • Zhu M, Liu J, Xiao J, et al. Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun. 2017;8(1):14718. doi:10.1038/ncomms14718
  • Sharma P, Kumar A, Agarwal T, et al. Nucleic acid-based therapeutics for dermal wound healing. Int J Biol Macromol. 2022;220:920–933. doi:10.1016/j.ijbiomac.2022.08.099
  • Elkhoury K, Chen M, Koçak P, et al. Hybrid extracellular vesicles-liposome incorporated advanced bioink to deliver microRNA. Biofabrication. 2022;14(4):045008. doi:10.1088/1758-5090/ac8621
  • Yu C, Chen L, Zhou W, et al. Injectable bacteria-sensitive hydrogel promotes repair of infected fractures via sustained release of miRNA antagonist. ACS Appl Mater Interfaces. 2022;14(30):34427–34442. doi:10.1021/acsami.2c08491
  • van den Broek LJ, Limandjaja GC, Niessen FB, Gibbs S. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol. 2014;23(6):382–386. doi:10.1111/exd.12419
  • Ehrlich HP, Needle AL. Wound healing in tight-skin mice: delayed closure of excised wounds. Plast Reconstr Surg. 1983;72(2):190–198. doi:10.1097/00006534-198308000-00012
  • Yang J-X, Li S-Y, Chen M-L, He L-R. The role of altered fatty acid in pathological scars and their dermal fibroblasts. Chin J Traumatol. 2022;25(4):218–223. doi:10.1016/j.cjtee.2022.03.006