466
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Formulation and Biomedical Activity of Oil-in-Water Nanoemulsion Combining Tinospora smilacina Water Extract and Calophyllum inophyllum Seeds Oil

, , , , &
Pages 1159-1174 | Received 03 Feb 2023, Accepted 28 Mar 2023, Published online: 01 May 2023

References

  • Bonifacio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–15. doi:10.2147/IJN.S52634
  • Ahmad S, Alghamdi SA. A statistical approach to optimizing concrete mixture design. Sci World J. 2014;2014:1–7. doi:10.1155/2014/561539
  • Zaidi Z, Lanigan SW. Skin: structure and function. In: Dermatology in Clinical Practice. Springer; 2010:1–15.
  • Ajazuddin SS, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81(7):680–689. doi:10.1016/j.fitote.2010.05.001
  • Kakde P, Jani R, Changediya VV. A review on nanoemulsions: a recent drug delivery tool. J Drug Deliv Ther. 2019;9(5):185–191. doi:10.22270/jddt.v9i5.3577
  • Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release. 2017;247:86–105. doi:10.1016/j.jconrel.2016.12.022
  • Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv. 2012;9(7):783–804. doi:10.1517/17425247.2012.686490
  • Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–225. doi:10.1016/j.jconrel.2017.11.049
  • Zorzi GK, Carvalho ELS, von Poser GL, Teixeira HF. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev Bras Farmacogn. 2015;25:426–436. doi:10.1016/j.bjp.2015.07.015
  • Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. International natural product sciences taskforce, Supuran CT: natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216. doi:10.1038/s41573-020-00114-z
  • Saki E, Murthy V, Khandanlou R, Wang H, Wapling J, Weir R. Optimisation of Calophyllum inophyllum seed oil nanoemulsion as a potential wound healing agent. BMC Complementary Med Ther. 2022;22(1):1–15. doi:10.1186/s12906-022-03751-6
  • Chi S, She G, Han D, Wang W, Liu Z, Liu B. Genus tinospora: ethnopharmacology, phytochemistry, and pharmacology. Evid Based Complementary Altern Med. 2016;2016:1–32. doi:10.1155/2016/9232593
  • Pathak AK, Jain DC, Sharma RP. Chemistry and Biological activities of the genera tinospora. Int J Pharmacogn. 2008;33(4):277–287. doi:10.3109/13880209509065379
  • Aboriginal Communities of the Northern Territory. Traditional Aboriginal Medicines in the Northern Territory of Australia. Darwin: Conservation Commission of the Northern Territory of Australia; 1993.
  • Knight T, Barr A, Andrews M, Alexander V; Aboriginal Communities of the Northern Territory of Australia. Traditional Bush Medicines: An Aboriginal Pharmacopoeia. Richmond, Vic.: Greenhouse Publications; 1988.
  • Li RW, Leach DN, Myers SP, et al. Anti‐inflammatory activity, cytotoxicity and active compounds of Tinospora smilacina Benth. Phytother Res. 2004;18(1):78–83. doi:10.1002/ptr.1373
  • Uzor PF. Alkaloids from plants with antimalarial activity: a review of recent studies. Evid Based Complementary Altern Med. 2020;2020:8749083. doi:10.1155/2020/8749083
  • Chingwaru C, Bagar T, Maroyi A, Kapewangolo PT, Chingwaru W. Wound healing potential of selected Southern African medicinal plants: a review. J Herb Med. 2019;17:100263. doi:10.1016/j.hermed.2019.100263
  • Li YZ, Li ZL, Yin SL, et al. Triterpenoids from Calophyllum inophyllum and their growth inhibitory effects on human leukemia HL-60 cells. Fitoterapia. 2010;81(6):586–589. doi:10.1016/j.fitote.2010.02.005
  • Sundur S, Shrivastava B, Sharma P, Raj SS, Jayasekhar VL. A review article of pharmacological activities and biological importance of Calophyllum inophyllum. Int J Adv Res. 2014;2(12):599–603.
  • Spino C, Dodier M, Sotheeswaran S. Anti-HIV coumarins from Calophyllum seed oil. Bioorg Med Chem Lett. 1998;8(24):3475–3478. doi:10.1016/S0960-894X(98)00628-3
  • Pawar KD, Joshi SP, Bhide SR, Thengane SR. Pattern of anti-HIV dipyranocoumarin expression in callus cultures of Calophyllum inophyllum Linn. J Biotechnol. 2007;130(4):346–353. doi:10.1016/j.jbiotec.2007.04.024
  • Souza Mdo C, Beserra AM, Martins DC, et al. In vitro and in vivo anti-Helicobacter pylori activity of Calophyllum brasiliense Camb. J Ethnopharmacol. 2009;123(3):452–458. doi:10.1016/j.jep.2009.03.030
  • Morel C, Séraphin D, Oger J-M, et al. New Xanthones from Calophyllum caledonicum. J Nat Prod. 2000;63(11):1471–1474. doi:10.1021/np000215m
  • Chelladurai SJS, Murugan K, Ray AP, Upadhyaya M, Narasimharaj V, Gnanasekaran S. Optimization of process parameters using response surface methodology: a review. Mater Today. 2021;37:1301–1304.
  • Li Z, Lu D, Gao X. Optimization of mixture proportions by statistical experimental design using response surface method: a review. J Build Eng. 2021;36:102101. doi:10.1016/j.jobe.2020.102101
  • Mohamad Zen NI, Abd Gani SS, Shamsudin R, Fard Masoumi HR. The use of D-optimal mixture design in optimizing development of okara tablet formulation as a dietary supplement. Sci World J. 2015;2015:1–7. doi:10.1155/2015/684319
  • Parikh K, Mundada P, Sawant K. Design and optimization of controlled release felbamate tablets by d-optimal mixture design: in vitro-in vivo evaluation. Indian J Pharm Sci. 2019;81(1):71–81. doi:10.4172/pharmaceutical-sciences.1000481
  • Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S. Design of Experiments, Principles and Applications. Umetrics AB; 2000.
  • Esbensen KH, Guyot D, Westad F, Houmoller LP. Multivariate Data Analysis: In Practice: An Introduction to Multivariate Data Analysis and Experimental Design. Multivariate Data Analysis; 2002.
  • Vater C, Hlawaty V, Werdenits P, et al. Effects of lecithin-based nanoemulsions on skin: short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin. Int J Pharm. 2020;580:119209. doi:10.1016/j.ijpharm.2020.119209
  • Buchholz UJ, Finke S, Conzelmann -K-K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol. 1999;73(1):251–259. doi:10.1128/JVI.73.1.251-259.1999
  • Bopage NS, Kamal Bandara Gunaherath GM, Jayawardena KH, Wijeyaratne SC, Abeysekera AM, Somaratne S. Dual function of active constituents from bark of Ficus racemosa L in wound healing. BMC Complement Altern Med. 2018;18(1):29. doi:10.1186/s12906-018-2089-9
  • Shanmugapriya K, Kim H, Saravana PS, Chun BS, Kang HW. Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: investigation on anticancer, wound healing, and antibacterial effects. Colloids Surf B Biointerfaces. 2018;172:170–179. doi:10.1016/j.colsurfb.2018.08.042
  • Geng P, Zhang R, Aisa HA, et al. Fast profiling of the integral metabolism of flavonols in the active fraction of Gossypium herbaceam L. using liquid chromatography/multi‐stage tandem mass spectrometry. Rapid Comm Mass Spectrom. 2007;21(12):1877–1888. doi:10.1002/rcm.3031
  • Cavaliere C, Foglia P, Pastorini E, Samperi R, Laganà A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high‐performance liquid chromatography with tandem mass spectrometry. Rapid Comm Mass Spectrom. 2005;19(21):3143–3158. doi:10.1002/rcm.2185
  • Hassan WHB, Abdelaziz S, Al Yousef HM. Chemical composition and biological activities of the aqueous fraction of Parkinsonea aculeata L. growing in Saudi Arabia. Arab J Chem. 2019;12(3):377–387. doi:10.1016/j.arabjc.2018.08.003
  • Brito A, Ramirez JE, Areche C, Sepúlveda B, Simirgiotis MJ. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules. 2014;19(11):17400–17421. doi:10.3390/molecules191117400
  • Ozarowski M, Piasecka A, Paszel-Jaworska A, et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Rev Bras Farmacogn. 2018;28:179–191. doi:10.1016/j.bjp.2018.01.006
  • Sharma V, Janmeda P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab J Chem. 2017;10(4):509–514. doi:10.1016/j.arabjc.2014.08.019
  • Khandanlou R, Murthy V, Wang H. Gold nanoparticle-assisted enhancement in bioactive properties of Australian native plant extracts, Tasmannia lanceolata and Backhousia citriodora. Mater Sci Eng C. 2020;112:110922. doi:10.1016/j.msec.2020.110922
  • Cassien M, Mercier A, Thétiot-Laurent S, et al. Improving the antioxidant properties of Calophyllum inophyllum seed oil from French Polynesia: development and biological applications of resinous ethanol-soluble extracts. Antioxidants. 2021;10(2):199. doi:10.3390/antiox10020199
  • Hungerford NL, Sands DPA, Kitching W. Isolation and structure of some constituents of the Australian medicinal plant Tinospora smilacina (‘snakevine’). Aust J Chem. 1998;51(12):1103–1112. doi:10.1071/C98034
  • Chang SK, Jiang Y, Yang B. An update of prenylated phenolics: food sources, chemistry and health benefits. Trends Food Sci Technol. 2021;108:197–213. doi:10.1016/j.tifs.2020.12.022
  • Roowi S, Crozier A. Flavonoids in tropical citrus species. J Agric Food Chem. 2011;59(22):12217–12225. doi:10.1021/jf203022f
  • Mueller M, Lukas B, Novak J, Simoncini T, Genazzani AR, Jungbauer A. Oregano: a source for peroxisome proliferator-activated receptor γ antagonists. J Agric Food Chem. 2008;56(24):11621–11630. doi:10.1021/jf802298w
  • Chan BCL, Ip M, Gong H, et al. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine. 2013;20(7):611–614. doi:10.1016/j.phymed.2013.02.007
  • Chandler D, Woldu A, Rahmadi A, et al. Effects of plant‐derived polyphenols on TNF‐α and nitric oxide production induced by advanced glycation endproducts. Mol Nutr Food Res. 2010;54(S2):S141–S150. doi:10.1002/mnfr.200900504
  • Lee D-H, Park J-K, Choi J, Jang H, Seol J-W. Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model. Int Immunopharmacol. 2020;89:107046. doi:10.1016/j.intimp.2020.107046
  • Kim Y-J, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005;62(15):1707–1723. doi:10.1007/s00018-005-5054-y
  • Badria F, elGayyar MA. A new type of tyrosinase inhibitors from natural products as potential treatments for hyperpigmentation. Boll Chim Farm. 2001;140(4):267–271.
  • Yolmeh M, Jafari SM. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017;10(3):413–433. doi:10.1007/s11947-016-1855-2
  • Buruk Sahin Y, Aktar Demirtaş E, Burnak N. Mixture design: a review of recent applications in the food industry. Pamukkale Univ J Eng Sci. 2016;22(4):297–304. doi:10.5505/pajes.2015.98598
  • Oluwole AO, Ikhu-Omoregbe DI, Jideani VA, Ntwampe SK. Effect of African catfish mucilage concentration on stability of nanoemulsion using d-optimal mixture design. Appl Sci. 2021;11(15):6672. doi:10.3390/app11156672
  • Yakoubi S, Kobayashi I, Uemura K, et al. Essential-oil-loaded nanoemulsion lipidic-phase optimization and modeling by response surface methodology (RSM): enhancement of their antimicrobial potential and bioavailability in nanoscale food delivery system. Foods. 2021;10(12):3149. doi:10.3390/foods10123149
  • Shukla T, Pandey SP, Khare P, Upmanyu N. Development of ketorolac tromethamine loaded microemulsion for topical delivery using D-optimal experimental approach: characterization and evaluation of analgesic and anti-inflammatory efficacy. J Drug Deliv Sci Technol. 2021;64:102632. doi:10.1016/j.jddst.2021.102632
  • Jusril NA, Abu Bakar SI, Khalil KA, Md Saad WM, Wen NK, Adenan MI. Development and optimization of nanoemulsion from ethanolic extract of centella asiatica (nanoSECA) using d-optimal mixture design to improve blood-brain barrier permeability. Evid Based Complementary Altern Med. 2022;2022:1–18. doi:10.1155/2022/3483511
  • Myers RH, Montgomery DC, Anderson-Cook CM. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons; 2016.
  • Hussain Z, Thu HE, Ng SF, Khan S, Katas H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: a review of new trends and state-of-The-art. Colloids Surf B Biointerfaces. 2017;150:223–241. doi:10.1016/j.colsurfb.2016.11.036
  • Mehmood T, Ahmed A, Ahmad A, Ahmad MS, Sandhu MA. Optimization of mixed surfactants-based beta-carotene nanoemulsions using response surface methodology: an ultrasonic homogenization approach. Food Chem. 2018;253:179–184. doi:10.1016/j.foodchem.2018.01.136
  • Polychniatou V, Tzia C. Evaluation of surface-active and antioxidant effect of olive oil endogenous compounds on the stabilization of water-in-olive-oil nanoemulsions. Food Chem. 2018;240:1146–1153. doi:10.1016/j.foodchem.2017.08.044
  • Franklyne JS, Iyer S, Ebenazer A, Mukherjee A, Chandrasekaran N. Essential oil nanoemulsions: antibacterial activity in contaminated fruit juices. Int J Food Sci Technol. 2019;54(9):2802–2810. doi:10.1111/ijfs.14195
  • Saberi AH, Fang Y, McClements DJ. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J Colloid Interface Sci. 2013;391:95–102. doi:10.1016/j.jcis.2012.08.069
  • Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: a review of encapsulation technologies, bioaccessibility and applications. Food Res Int. 2020;132:109035. doi:10.1016/j.foodres.2020.109035
  • Chen L, Gnanaraj C, Arulselvan P, El-Seedi H, Teng H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: based on its activity in the treatment of type 2 diabetes. Trends Food Sci Technol. 2019;85:149–162. doi:10.1016/j.tifs.2018.11.026
  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. 2018;5(3):93. doi:10.3390/medicines5030093
  • Chuacharoen T, Prasongsuk S, Sabliov CM. Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization. Molecules. 2019;24(15):2744. doi:10.3390/molecules24152744
  • Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia. 2020;146:104720. doi:10.1016/j.fitote.2020.104720
  • Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World. 2013;2013:162750.
  • Pawar KD, Patil RV. Phytochemicals of Calophyllum inophyllum. In: Bioactive Compounds in Underutilized Fruits and Nuts. Springer; 2020:317–327.
  • Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 2011;6(5):929–941. doi:10.2217/nnm.11.77
  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. doi:10.1152/physrev.00067.2017
  • Wiegand C, Abel M, Hipler U-C, Elsner P. Effect of non-adhering dressings on promotion of fibroblast proliferation and wound healing in vitro. Sci Rep. 2019;9(1):1–10.
  • Özay Y, Güzel S, Yumrutaş Ö, et al. Wound healing effect of kaempferol in diabetic and nondiabetic rats. J Surg Res. 2019;233:284–296. doi:10.1016/j.jss.2018.08.009
  • Yousry C, Saber MM, Abd-Elsalam WH. A cosmeceutical topical water-in-oil nanoemulsion of natural bioactives: design of experiment, in vitro characterization, and in vivo skin performance against UVB irradiation-induced skin damages. Int J Nanomedicine. 2022;17:2995. doi:10.2147/IJN.S363779
  • Puteri FH, Widjaja J, Cahyani F, Mooduto L, Wahjuningrum DA. The comparative toxicity of xanthones and tannins in mangosteen (Garcinia mangostana Linn.) pericarp extract against BHK-21 fibroblast cell culture. Contemp Clin Dent. 2019;10(2):319. doi:10.4103/ccd.ccd_579_18