826
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

Skin Ageing: A Progressive, Multi-Factorial Condition Demanding an Integrated, Multilayer-Targeted Remedy

ORCID Icon, &
Pages 1215-1229 | Received 14 Mar 2023, Accepted 01 May 2023, Published online: 09 May 2023

References

  • Wollina U, Lotti T, Vojvodic A, Nowak A. Dermatoporosis – the chronic cutaneous fragility syndrome. Open Access Maced J Med Sci. 2019;7(18):3046. doi:10.3889/oamjms.2019.766
  • Kaya G, Kaya A, Sorg O, Saurat JH. Dermatoporosis, a prevalent skin condition affecting the elderly: current situation and potential treatments. Clin Dermatol. 2019;37(4):346–350. doi:10.1016/j.clindermatol.2019.04.006
  • Christensen K, Thinggaard M, McGue M, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262. doi:10.1136/bmj.b5262
  • Lefèvre-Utile A, Braun C, Haftek M, Aubin F. Five functional aspects of the epidermal barrier. Int J Mol Sci. 2021;22(21):11676. doi:10.3390/ijms222111676
  • Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–691. doi:10.1038/nri2622
  • Sevilla LM, Pérez P. Roles of the glucocorticoid and mineralocorticoid receptors in skin pathophysiology. Int J Mol Sci. 2018;19(7):1906. doi:10.3390/ijms19071906
  • Glatte P, Buchmann SJ, Hijazi MM, Illigens BMW, Siepmann T. Architecture of the cutaneous autonomic nervous system. Front Neurol. 2019;10:970. doi:10.3389/fneur.2019.00970
  • Mancino G, Miro C, Di Cicco E, Dentice M. Thyroid hormone action in epidermal development and homeostasis and its implications in the pathophysiology of the skin. J Endocrinol Invest. 2021;44(8):1571–1579. doi:10.1007/s40618-020-01492-2
  • Russo AF. Overview of neuropeptides: awakening the senses? Headache. 2017;57(Suppl2):37–46. doi:10.1111/head.13084
  • Slominski AT, Manna PR, Tuckey RC. Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp Dermatol. 2014;23(6):369–374. doi:10.1111/exd.12376
  • Hannen RF, Michael AE, Jaulim A, Bhogal R, Burrin JM, Philpott MP. Steroid synthesis by primary human keratinocytes; implications for skin disease. Biochem Biophys Res Commun. 2011;404(1):62–67. doi:10.1016/j.bbrc.2010.11.059
  • Jin R, Luo L, Zheng J. The trinity of skin: skin homeostasis as a neuro-endocrine-immune organ. Life Basel Switz. 2022;12(5):725. doi:10.3390/life12050725
  • Farage MA, Miller KW, Elsner P, Maibach HI. Characteristics of the Aging Skin. Adv Wound Care. 2013;2(1):5–10. doi:10.1089/wound.2011.0356
  • Chaudhary M, Khan A, Gupta M. Skin ageing: pathophysiology and current market treatment approaches. Curr Aging Sci. 2020;13(1):22–30. doi:10.2174/1567205016666190809161115
  • Baumann L. Skin ageing and its treatment. J Pathol. 2007;211(2):241–251. doi:10.1002/path.2098
  • Uitto J. Understanding premature skin aging. N Engl J Med. 1997;337(20):1463–1465. doi:10.1056/NEJM199711133372011
  • Naldaiz‐Gastesi N, Bahri OA. The panniculus carnosus muscle: an evolutionary enigma at the intersection of distinct research fields. J Anat. 2018;233(3):275–288. doi:10.1111/joa.12840
  • Okuda I, Yoshioka N, Shirakabe Y, Akita K. Basic analysis of facial ageing: the relationship between the superficial musculoaponeurotic system and age. Exp Dermatol. 2019;28(Suppl 1):38–42. doi:10.1111/exd.13827
  • Carroll JM, Hanna S, Guenther LC, Boucher N. Comparison of topical antiaging creams in the management of lateral canthal lines. J Cosmet Dermatol. 2020;19(3):694–704. doi:10.1111/jocd.13062
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi:10.1016/j.cell.2013.05.039
  • Gragnani A, Cornick SM, Chominski V. Review of major theories of skin aging. Adv Aging Res. 2014;3(4):265–284. doi:10.4236/aar.2014.34036
  • Haydont V, Bernard BA, Fortunel NO. Age-related evolutions of the dermis: clinical signs, fibroblast and extracellular matrix dynamics. Mech Ageing Dev. 2019;177:150–156. doi:10.1016/j.mad.2018.03.006
  • Nguyen HP, Katta R. Sugar sag: glycation and the role of diet in aging skin. Skin Ther Lett. 2015;20(6):1–5.
  • Cai Y, Song W, Li J, et al. The landscape of aging. Sci China Life Sci. 2022;65(12):2354–2454. doi:10.1007/s11427-022-2161-3
  • Krokan HE, Bjørås M. Base excision repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012583. doi:10.1101/cshperspect.a012583
  • Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–481. doi:10.1038/nrm3822
  • Skoczyńska A, Budzisz E, Trznadel-Grodzka E, Rotsztejn H. Melanin and lipofuscin as hallmarks of skin aging. Adv Dermatol Allergol Dermatol Alergol. 2017;34(2):97–103. doi:10.5114/ada.2017.67070
  • Lamore SD, Qiao S, Horn D, Wondrak GT. Proteomic Identification of Cathepsin B and Nucleophosmin as Novel UVA-Targets in Human Skin Fibroblasts. Photochem Photobiol. 2010;86(6):1307–1317. doi:10.1111/j.1751-1097.2010.00818.x
  • Reilly DM, Lozano J. Skin collagen through the lifestages: importance for skin health and beauty. Plast Aesthetic Res. 2021;8:2. doi:10.20517/2347-9264.2020.153
  • Weihermann AC, Lorencini M, Brohem CA, de Carvalho CM. Elastin structure and its involvement in skin photoageing. Int J Cosmet Sci. 2017;39(3):241–247. doi:10.1111/ics.12372
  • Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol J Int Soc Matrix Biol. 2015;1:224–231. doi:10.1016/j.matbio.2015.01.005
  • Chiang HM, Chen HC, Chiu HH, Chen CW, Wang SM, Wen KC. Neonauclea reticulata (Havil) Merr Stimulates Skin Regeneration after UVB Exposure via ROS Scavenging and Modulation of the MAPK/MMPs/Collagen Pathway. Evid-Based Complement Altern Med ECAM. 2013;2013:324864. doi:10.1155/2013/324864
  • Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: a notion of mosaic and therapeutic strategies. Biochem Pharmacol. 2017;142:1–12. doi:10.1016/j.bcp.2017.04.011
  • Rübe CE, Bäumert C, Schuler N, et al. Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. Npj Aging Mech Dis. 2021;7(1):1–11. doi:10.1038/s41514-021-00060-z
  • O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–181. doi:10.1038/nrm2848
  • Jacczak B, Rubiś B, Totoń E. Potential of naturally derived compounds in telomerase and telomere modulation in skin senescence and aging. Int J Mol Sci. 2021;22(12):6381. doi:10.3390/ijms22126381
  • Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol. 2011;20(4):297–302. doi:10.1111/j.1600-0625.2010.01242.x
  • Kirwan M, Dokal I. Dyskeratosis congenita: a genetic disorder of many faces. Clin Genet. 2008;73(2):103–112. doi:10.1111/j.1399-0004.2007.00923.x
  • D’Errico M, Lemma T, Calcagnile A. Cell type and DNA damage specific response of human skin cells to environmental agents. Mutat Res. 2007;614(1–2):37–47. doi:10.1016/j.mrfmmm.2006.06.009
  • Stout R, Birch-Machin M. Mitochondria’s role in skin ageing. Biology. 2019;8(2):29. doi:10.3390/biology8020029
  • Sreedhar A, Aguilera-Aguirre L, Singh KK. Mitochondria in skin health, aging, and disease. Cell Death Dis. 2020;11(6):444. doi:10.1038/s41419-020-2649-z
  • Velarde MC, Demaria M. Targeting senescent cells: possible implications for delaying skin aging: a mini-review. Gerontology. 2016;62(5):513–518. doi:10.1159/000444877
  • Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–972. doi:10.1172/JCI64098
  • Zhuang Y, Lyga J. Inflammaging in skin and other tissues - The roles of complement system and macrophage. Inflamm Allergy Drug Targets. 2014;13(3):153–161. doi:10.2174/1871528113666140522112003
  • Kim JC, Park TJ, Kang HY. Skin-aging pigmentation: who is the real enemy? Cells. 2022;11(16):2541. doi:10.3390/cells11162541
  • Görög A, Bánvölgyi A, Holló P. Characteristics of the ageing skin, xerosis cutis and its complications. Dev Health Sci. 2022;4(4):77–80. doi:10.1556/2066.2021.00051
  • Yoon JE, Kim Y, Kwon S, et al. Senescent fibroblasts drive ageing pigmentation: A potential therapeutic target for senile lentigo. Theranostics. 2018;8(17):4620–4632. doi:10.7150/thno.26975
  • Kang HY, Lee JW, Papaccio F, Bellei B, Picardo M. Alterations of the pigmentation system in the aging process. Pigment Cell Melanoma Res. 2021;34(4):800–813. doi:10.1111/pcmr.12994
  • Fulop T, Larbi A, Pawelec G, et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2021. doi:10.1007/s12016-021-08899-6
  • Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008;30(2):87–95. doi:10.1111/j.1468-2494.2007.00415.x
  • Lebel M. Werner syndrome: genetic and molecular basis of a premature aging disorder. Cell Mol Life Sci CMLS. 2001;58(7):857–867. doi:10.1007/s00018-001-8398-y
  • Rizza ERH, DiGiovanna JJ, Khan SG, Tamura D, Jeskey JD, Kraemer KH. Xeroderma pigmentosum: a model for human premature aging. J Invest Dermatol. 2021;141(4):976–984. doi:10.1016/j.jid.2020.11.012
  • Hussain M, Krishnamurthy S, Patel J, et al. Skin abnormalities in disorders with DNA repair defects, premature aging, and mitochondrial dysfunction. J Invest Dermatol. 2021;141(4S):968–975. doi:10.1016/j.jid.2020.10.019
  • Han A, Chien AL, Kang S. Photoaging. Dermatol Clin. 2014;32(3):291–299, vii. doi:10.1016/j.det.2014.03.015
  • Cao C, Xiao Z, Wu Y, Ge C. Diet and skin aging—from the perspective of food nutrition. Nutrients. 2020;12(3):870. doi:10.3390/nu12030870
  • Schikowski T, Hüls A. Air pollution and skin aging. Curr Environ Health Rep. 2020;7(1):58–64. doi:10.1007/s40572-020-00262-9
  • Martic I, Jansen-Dürr P, Cavinato M. Effects of air pollution on cellular senescence and skin aging. Cells. 2022;11:14. doi:10.3390/cells11142220
  • Sundelin T, Lekander M, Kecklund G, Van Someren EJW, Olsson A, Axelsson J. Cues of fatigue: effects of sleep deprivation on facial appearance. Sleep. 2013;36(9):1355–1360. doi:10.5665/sleep.2964
  • Oyetakin-White P, Suggs A, Koo B, et al. Does poor sleep quality affect skin ageing? Clin Exp Dermatol. 2015;40(1):17–22. doi:10.1111/ced.12455
  • Ichibori R, Fujiwara T, Tanigawa T, et al. Objective assessment of facial skin aging and the associated environmental factors in Japanese monozygotic twins. J Cosmet Dermatol. 2014;13(2):158–163. doi:10.1111/jocd.12081
  • Russell-Goldman E, Murphy GF. The pathobiology of skin aging: new insights into an old dilemma. Am J Pathol. 2020;190(7):1356–1369. doi:10.1016/j.ajpath.2020.03.007
  • Furue M, Kadono T. “Inflammatory skin march” in atopic dermatitis and psoriasis. Inflamm Res off J Eur Histamine Res Soc Al. 2017;66(10):833–842. doi:10.1007/s00011-017-1065-z
  • Zouboulis CC, Ganceviciene R, Liakou AI, Theodoridis A, Elewa R, Makrantonaki E. Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol. 2019;37(4):365–372. doi:10.1016/j.clindermatol.2019.04.002
  • Schwartz J, Friedman AJ. Exogenous factors in skin barrier repair. J Drugs Dermatol JDD. 2016;15(11):1289–1294.
  • Rosso JD, Zeichner J, Alexis A, Cohen D, Berson D. Understanding the epidermal barrier in healthy and compromised skin: clinically relevant information for the dermatology practitioner. J Clin Aesthetic Dermatol. 2016;9(4 Suppl 1):S2–S8.
  • Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta. 2014;1841(3):280–294. doi:10.1016/j.bbalip.2013.11.007
  • Kumar V, Bouameur JE, Bär J, et al. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol. 2015;211(5):1057–1075. doi:10.1083/jcb.201404147
  • Kim Y, Lim KM. Skin barrier dysfunction and filaggrin. Arch Pharm Res. 2021;44(1):36–48. doi:10.1007/s12272-021-01305-x
  • Ishitsuka Y, Roop DR. Loricrin at the boundary between inside and outside. Biomolecules. 2022;12(5):673. doi:10.3390/biom12050673
  • Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology. 2020;9(12):485. doi:10.3390/biology9120485
  • Ghosh K, Capell BC. The senescence-associated secretory phenotype: critical effector in skin cancer and aging. J Invest Dermatol. 2016;136(11):2133–2139. doi:10.1016/j.jid.2016.06.621
  • Zhang S, Duan E. Fighting against skin aging: the way from bench to bedside. Cell Transplant. 2018;27(5):729–738. doi:10.1177/0963689717725755
  • Xu M, Tchkonia T, Ding H, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci. 2015;112(46):E6301–E6310. doi:10.1073/pnas.1515386112
  • Laberge RM, Zhou L, Sarantos MR, et al. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell. 2012;11(4):569–578. doi:10.1111/j.1474-9726.2012.00818.x
  • Jeon S, Choi M. Anti-inflammatory and anti-aging effects of hydroxytyrosol on human dermal fibroblasts (HDFs). Biomed Dermatol. 2018;2(1):21. doi:10.1186/s41702-018-0031-x
  • Milosheska D, Roškar R. Use of retinoids in topical antiaging treatments: a focused review of clinical evidence for conventional and nanoformulations. Adv Ther. 2022;39(12):5351–5375. doi:10.1007/s12325-022-02319-7
  • Widgerow AD, Fabi SG, Palestine RF, et al. Extracellular matrix modulation: optimizing skin care and rejuvenation procedures. J Drugs Dermatol JDD. 2016;15(4 Suppl):s63–71.
  • Cole MA, Quan T, Voorhees JJ, Fisher GJ. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal. 2018;12(1):35–43. doi:10.1007/s12079-018-0459-1
  • Lee JH, Park J, Shin DW. The molecular mechanism of polyphenols with anti-aging activity in aged human dermal fibroblasts. Mol Basel Switz. 2022;27(14):4351. doi:10.3390/molecules27144351
  • Sárdy M. Role of matrix metalloproteinases in skin ageing. Connect Tissue Res. 2009;50(2):132–138. doi:10.1080/03008200802585622
  • Enescu CD, Bedford LM, Potts G, Fahs F. A review of topical vitamin C derivatives and their efficacy. J Cosmet Dermatol. 2022;21(6):2349–2359. doi:10.1111/jocd.14465
  • Rossetti D, Kielmanowicz MG, Vigodman S, et al. A novel anti-ageing mechanism for retinol: induction of dermal elastin synthesis and elastin fibre formation. Int J Cosmet Sci. 2011;33(1):62–69. doi:10.1111/j.1468-2494.2010.00588.x
  • Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: sweet as sugar targets for topical skin anti-aging. Clin Cosmet Investig Dermatol. 2021;14:1227–1246. doi:10.2147/CCID.S328671
  • Gkogkolou P, Böhm M. Advanced glycation end products: key players in skin aging? Dermatoendocrinol. 2012;4(3):259–270. doi:10.4161/derm.22028
  • Chen C, Zhang JQ, Li L, et al. Advanced Glycation End Products in the Skin: molecular Mechanisms, Methods of Measurement, and Inhibitory Pathways. Front Med. 2022;9:e46.
  • Mishra SK, Balendra V, Esposto J, et al. Therapeutic Antiaging Strategies. Biomedicines. 2022;10(10):2515. doi:10.3390/biomedicines10102515
  • Martínez P, Blasco MA. Role of shelterin in cancer and aging. Aging Cell. 2010;9(5):653–666. doi:10.1111/j.1474-9726.2010.00596.x
  • Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–3708. doi:10.3892/mmr.2019.10614
  • Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. doi:10.1002/emmm.201200245
  • Aydin Y. Antiaging Strategies Based on Telomerase Activity. In: Rizvi SI, Çakatay U editors. Molecular Basis and Emerging Strategies for Anti-Aging Interventions. Springer; 2018:97–109. doi:10.1007/978-981-13-1699-9_7
  • Kuo IY, Ehrlich BE. Signaling in Muscle Contraction. Cold Spring Harb Perspect Biol. 2015;7(2):a006023. doi:10.1101/cshperspect.a006023
  • Kim B, Cho HE, Moon SH, et al. Transdermal delivery systems in cosmetics. Biomed Dermatol. 2020;4(1):10. doi:10.1186/s41702-020-0058-7
  • Cosgrove MC, Franco OH, Granger SP, Murray PG, Mayes AE. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am J Clin Nutr. 2007;86(4):1225–1231. doi:10.1093/ajcn/86.4.1225
  • Draelos ZD, Oral A. Supplement and the nutrition–skin connection. J Clin Aesthetic Dermatol. 2019;12(7):13–16.
  • Chen J, Waqas K, Tan RC, et al. The association between dietary and skin advanced glycation end products: the Rotterdam Study. Am J Clin Nutr. 2020;112(1):129–137. doi:10.1093/ajcn/nqaa117
  • Jhawar N, Wang JV, Saedi N. Oral collagen supplementation for skin aging: a fad or the future? J Cosmet Dermatol. 2020;19(4):910–912. doi:10.1111/jocd.13096
  • Al-Atif H. Collagen supplements for aging and wrinkles: a paradigm shift in the fields of dermatology and cosmetics. Dermatol Pract Concept. 2022;12(1):e2022018. doi:10.5826/dpc.1201a18
  • Sun Q, Wu J, Qian G, Cheng H. Effectiveness of dietary supplement for skin moisturizing in healthy adults: a systematic review and meta-analysis of randomized controlled trials. Front Nutr. 2022;9:895192. doi:10.3389/fnut.2022.895192
  • Hsu TF, Su ZR, Hsieh YH, et al. Oral Hyaluronan Relieves Wrinkles and Improves Dry Skin: a 12-Week Double-Blinded, Placebo-Controlled Study. Nutrients. 2021;13(7):2220. doi:10.3390/nu13072220
  • Jo S, Jung Y-S, Cho Y-R, et al. Oral Administration of Rosa gallica Prevents UVB−Induced Skin Aging through Targeting the c−Raf Signaling Axis. Antioxidants. 2021;10(11):1663. doi:10.3390/antiox10111663
  • Thye AY-K, Bah Y-R, Law JW-F, et al. Gut–skin axis: unravelling the connection between the gut microbiome and psoriasis. Biomedicines. 2022;10(5):1037. doi:10.3390/biomedicines10051037
  • Sinha S, Lin G, Ferenczi K. The skin microbiome and the gut-skin axis. Clin Dermatol. 2021;39(5):829–839. doi:10.1016/j.clindermatol.2021.08.021
  • Trompette A, Pernot J, Perdijk O, et al. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol. 2022;15(5):908–926. doi:10.1038/s41385-022-00524-9
  • He B, Chen Y, Yu S, Hao Y, Wang F, Qu L. Food plant extracts for sleep-related skin health: mechanisms and prospects. Food Biosci. 2022;49:101951. doi:10.1016/j.fbio.2022.101951
  • He H, Tang J, Ru D, et al. Protective effects of Cordyceps extract against UVB‑induced damage and prediction of application prospects in the topical administration: an experimental validation and network pharmacology study. Biomed Pharmacother. 2020;121:109600. doi:10.1016/j.biopha.2019.109600
  • Huang TT, Chong KY, Ojcius DM, et al. Hirsutella sinensis mycelium suppresses interleukin-1β and interleukin-18 secretion by inhibiting both canonical and non-canonical inflammasomes. Sci Rep. 2013;3:1374. doi:10.1038/srep01374
  • Park JM, Lee JS, Lee KR, Ha SJ, Hong EK. Cordyceps militaris extract protects human dermal fibroblasts against oxidative stress-induced apoptosis and premature senescence. Nutrients. 2014;6(9):3711–3726. doi:10.3390/nu6093711
  • Prommaban A, Sriyab S, Marsup P, et al. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. Pharm Biol. 2022;60(1):225. doi:10.1080/13880209.2021.2025255
  • You S, Jang M, Kim GH. Mori Cortex radicis extract protected against diet-induced neuronal damage by suppressing the AGE-RAGE/MAPK signaling pathway in C. elegans and mouse model. J Funct Foods. 2022;91:104996. doi:10.1016/j.jff.2022.104996
  • Seo CS, Lim HS, Jeong SJ, Ha H, Shin HK. HPLC-PDA analysis and anti-inflammatory effects of mori cortex radicis. Nat Prod Commun. 2013;8(10):1934578X1300801027. doi:10.1177/1934578X1300801027
  • Lu YE, Chen YJ. Resveratrol inhibits matrix metalloproteinase-1 and −3 expression by suppressing of p300/NFκB acetylation in TNF-α-treated human dermal fibroblasts. Chem Biol Interact. 2021;337:109395. doi:10.1016/j.cbi.2021.109395
  • Demarne F, Passaro G Use of an Acmella oleracea extract for the botulinum toxin-like effect thereof in an anti-wrinkle cosmetic composition. Available from: https://patents.google.com/patent/US7531193B2/en. Accessed December 28, 2022.
  • Wang R, Lechtenberg M, Sendker J, Petereit F, Deters A, Hensel A. Wound-healing plants from TCM: in vitro investigations on selected TCM plants and their influence on human dermal fibroblasts and keratinocytes. Fitoterapia. 2013;84:308–317. doi:10.1016/j.fitote.2012.12.020
  • Lee S, Lim JM, Jin MH, et al. Partially purified paeoniflorin exerts protective effects on UV-induced DNA damage and reduces facial wrinkles in human skin. J Cosmet Sci. 2006;57(1):57–64.
  • Kong L, Wang S, Wu X, Zuo F, Qin H, Wu J. Paeoniflorin attenuates ultraviolet B-induced apoptosis in human keratinocytes by inhibiting the ROS-p38-p53 pathway. Mol Med Rep. 2016;13(4):3553–3558. doi:10.3892/mmr.2016.4953
  • Yang L, Xing S, Wang K, Yi H, Du B. Paeonol attenuates aging MRC-5 cells and inhibits epithelial-mesenchymal transition of premalignant HaCaT cells induced by aging MRC-5 cell-conditioned medium. Mol Cell Biochem. 2018;439(1–2):117–129. doi:10.1007/s11010-017-3141-7
  • Sun Z, Du J, Hwang E, Yi TH. Paeonol extracted from Paeonia suffruticosa Andr. ameliorated UVB-induced skin photoaging via DLD/Nrf2/ARE and MAPK/AP-1 pathway. Phytother Res PTR. 2018;32(9):1741–1749. doi:10.1002/ptr.6100
  • Obayashi K, Kurihara K, Okano Y, Masaki H, Yarosh DB. L-Ergothioneine scavenges superoxide and singlet oxygen and suppresses TNF-alpha and MMP-1 expression in UV-irradiated human dermal fibroblasts. J Cosmet Sci. 2005;56(1):17–27.
  • Ko HJ, Kim J, Ahn M, Kim JH, Lee GS, Shin T. Ergothioneine alleviates senescence of fibroblasts induced by UVB damage of keratinocytes via activation of the Nrf2/HO-1 pathway and HSP70 in keratinocytes. Exp Cell Res. 2021;400(1):112516. doi:10.1016/j.yexcr.2021.112516
  • Paul BD, Snyder SH. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 2010;17(7):1134–1140. doi:10.1038/cdd.2009.163
  • Bazela K, Solyga-Zurek A, Debowska R, Rogiewicz K, Bartnik E, Eris I. l-Ergothioneine Protects Skin Cells against UV-Induced Damage—A Preliminary Study. Cosmetics. 2014;1(1):51–60. doi:10.3390/cosmetics1010051
  • Wanyonyi S. Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients. 2017;9(11):1261. doi:10.3390/nu9111261
  • Yulianti E. The effect of Kappaphycus alvarezii active fraction on oxidative stress and inflammation in streptozotocin and nicotinamide-induced diabetic rats. BMC Complement Med Ther. 2022;22(1):15. doi:10.1186/s12906-021-03496-8
  • Abu Bakar N, Anyanji VU, Mustapha NM, Lim SL, Mohamed S. Seaweed (Eucheuma cottonii) reduced inflammation, mucin synthesis, eosinophil infiltration and MMP-9 expressions in asthma-induced rats compared to Loratadine. J Funct Foods. 2015;19:710–722. doi:10.1016/j.jff.2015.10.011
  • Paufique J Use of an active principle derived from eucheuma cottonii and rich in linear galactans for controlling skin cell aging. 2014. Available from: https://patents.google.com/patent/EP2811974A2/en. Accessed December 30, 2022.
  • Yue K, Ye M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013;65(4):474–493. doi:10.1111/j.2042-7158.2012.01601.x
  • Bayazid AB, Kim JG, Park SH, Lim BO. Antioxidant, anti-inflammatory, and antiproliferative activity of mori cortex radicis extracts. Nat Prod Commun. 2020;15(1):1934578X19899765. doi:10.1177/1934578X19899765
  • Chan EWC, Lye PY, Wong SK. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med. 2016;14(1):17–30. doi:10.3724/SP.J.1009.2016.00017
  • Li Z, Chen X, Liu G, et al. Antioxidant Activity and Mechanism of Resveratrol and Polydatin Isolated from Mulberry (Morus alba L). Mol Basel Switz. 2021;26(24):7574. doi:10.3390/molecules26247574
  • Zeng HJ, Li QY, Ma J, Yang R, Qu LB. A comparative study on the effects of resveratrol and oxyresveratrol against tyrosinase activity and their inhibitory mechanism. Spectrochim Acta A Mol Biomol Spectrosc. 2021;251:119405. doi:10.1016/j.saa.2020.119405
  • Hecker A, Schellnegger M, Hofmann E, et al. The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J. 2022;19(1):9–28. doi:10.1111/iwj.13601
  • Wang XB, Zhu L, Huang J, et al. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin Med J. 2011;124(24):4310–4315.
  • Giovannelli L, Pitozzi V, Jacomelli M, et al. Protective effects of resveratrol against senescence-associated changes in cultured human fibroblasts. J Gerontol Ser A. 2011;66A(1):9–18. doi:10.1093/gerona/glq161
  • Aires V, Delmas D, Le Bachelier C, et al. Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts. Orphanet J Rare Dis. 2014;9(1):79. doi:10.1186/1750-1172-9-79
  • Rondanelli M, Fossari F, Vecchio V, et al. Acmella oleracea for pain management. Fitoterapia. 2020;140:104419. doi:10.1016/j.fitote.2019.104419
  • Barbosa AF, de Carvalho MG, Smith RE, Sabaa-Srur AUO. Spilanthol: occurrence, extraction, chemistry and biological activities. Rev Bras Farmacogn. 2016;26(1):128–133. doi:10.1016/j.bjp.2015.07.024
  • Boonen J, Baert B, Roche N, Burvenich C, De Spiegeleer B. Transdermal behaviour of the N-alkylamide spilanthol (affinin) from Spilanthes acmella (Compositae) extracts. J Ethnopharmacol. 2010;127(1):77–84. doi:10.1016/j.jep.2009.09.046
  • Moro SD, de Oliveira Fujii L, Teodoro LFR, et al. Acmella oleracea extract increases collagen content and organization in partially transected tendons. Microsc Res Tech. 2021;84(11):2588–2597. doi:10.1002/jemt.23809
  • Wang Z, He C, Peng Y, Chen F, Xiao P. Origins, Phytochemistry, Pharmacology, Analytical Methods and Safety of Cortex Moutan (Paeonia suffruticosa Andrew): a Systematic Review. Mol J Synth Chem Nat Prod Chem. 2017;22(6):946. doi:10.3390/molecules22060946
  • Borodina I, Kenny LC, McCarthy CM, et al. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev. 2020;33(2):190–217. doi:10.1017/S0954422419000301
  • Kalasariya HS, Yadav VK, Yadav KK, et al. Seaweed-based molecules and their potential biological activities: an eco-sustainable cosmetics. Molecules. 2021;26(17):5313. doi:10.3390/molecules26175313
  • Shah MD, Venmathi Maran BA, Shaleh SRM, Zuldin WH, Gnanaraj C, Yong YS. Therapeutic potential and nutraceutical profiling of north Bornean seaweeds: a review. Mar Drugs. 2022;20(2):101. doi:10.3390/md20020101
  • Wardani G, Farida N, Andayani R, Kuntoro M, Sudjarwo SA. The Potency of Red Seaweed (Eucheuma cottonii) Extracts as Hepatoprotector on Lead Acetate-induced Hepatotoxicity in Mice. Pharmacogn Res. 2017;9(3):282–286. doi:10.4103/pr.pr_69_16
  • Kim I, Kim S, Manggau M, et al. Red seaweed (Eucheuma cottonii) extract promotes human keratinocyte migration via p38 mitogen-activated protein kinase phosphorylation. Pharmacogn Mag. 2020;16:192. doi:10.4103/pm.pm_203_19