216
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

TMT-Based Quantitative Proteomic and Physiological Analyses on Serums of Chinese Patients with Active Vitiligo

ORCID Icon, , &
Pages 1407-1417 | Received 11 Mar 2023, Accepted 13 May 2023, Published online: 05 Jun 2023

References

  • Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. Vitiligo. Lancet. 2015;386(9988):74–84. doi:10.1016/s0140-6736(14)60763-7
  • Linthorst Homan MW, Spuls PI, de Korte J, Bos JD, Sprangers MA, van der Veen JP. The burden of vitiligo: patient characteristics associated with quality of life. J Am Acad Dermatol. 2009;61(3):411–420. doi:10.1016/j.jaad.2009.03.022
  • Salzes C, Abadie S, Seneschal J, et al. The Vitiligo Impact Patient Scale (VIPs): development and validation of a vitiligo burden assessment tool. J Invest Dermatol. 2016;136(1):52–58. doi:10.1038/jid.2015.398
  • Thatte SS, Khopkar US. The utility of dermoscopy in the diagnosis of evolving lesions of vitiligo. Indian J Dermatol Venereol Leprol. 2014;80(6):505–508. doi:10.4103/0378-6323.144144
  • Colucci R, Arunachalam M, Dragoni F, Galeone M, Berti S, Moretti S. Misdiagnosis and patient negation: a case of universal vitiligo. Eur J Dermatol. 2012;22(3):423–424. doi:10.1684/ejd.2012.1708
  • Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol. 2012;132(7):1869–1876. doi:10.1038/jid.2011.463
  • Rashighi M, Agarwal P, Richmond JM, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6(223):223ra23. doi:10.1126/scitranslmed.3007811
  • Richmond JM, Bangari DS, Essien KI, et al. Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease. J Invest Dermatol. 2017;137(2):350–358. doi:10.1016/j.jid.2016.09.016
  • Jian Z, Li K, Song P, et al. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J Invest Dermatol. 2014;134(8):2221–2230. doi:10.1038/jid.2014.152
  • Spritz RA. The genetics of generalized vitiligo. Curr Dir Autoimmun. 2008;10:244–257. doi:10.1159/000131501
  • Paterson EK, Ho H, Kapadia R, Ganesan AK. 9-cis retinoic acid is the ALDH1A1 product that stimulates melanogenesis. Exp Dermatol. 2013;22(3):202–209. doi:10.1111/exd.12099
  • Roméro C, Aberdam E, Larnier C, Ortonne JP. Retinoic acid as modulator of UVB-induced melanocyte differentiation. Involvement of the melanogenic enzymes expression. J Cell Sci. 1994;107(4):1095–1103. doi:10.1242/jcs.107.4.1095
  • Sato K, Morita M, Ichikawa C, Takahashi H, Toriyama M. Depigmenting mechanisms of all-trans retinoic acid and retinol on B16 melanoma cells. Biosci Biotechnol Biochem. 2008;72(10):2589–2597. doi:10.1271/bbb.80279
  • Kasraee B, Fallahi MR, Ardekani GS, et al. Retinoic acid synergistically enhances the melanocytotoxic and depigmenting effects of monobenzylether of hydroquinone in black guinea pig skin. Exp Dermatol. 2006;15(7):509–514. doi:10.1111/j.1600-0625.2006.00441.x
  • Hu N, Yi Q, Wang X, Wang L. Irritant contact dermatitis, multiple pyogenic granulomas and vitiligo following topical application of tretinoin. Dermatol Ther. 2020;33(6):e13966. doi:10.1111/dth.13966
  • Nair X, Parab P, Suhr L, Tramposch KM. Combination of 4-hydroxyanisole and all-trans retinoic acid produces synergistic skin depigmentation in swine. J Invest Dermatol. 1993;101(2):145–149. doi:10.1111/1523-1747.ep12363627
  • Ganesan AK, Ho H, Bodemann B, et al. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet. 2008;4(12):e1000298. doi:10.1371/journal.pgen.1000298
  • Jin Y, Andersen G, Yorgov D, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48(11):1418–1424. doi:10.1038/ng.3680
  • Tang X, Fang F, Yang J, et al. Association study reveals one susceptibility locus with vitiligo in the Chinese Han population. Genet Test Mol Biomarkers. 2019;23(11):791–796. doi:10.1089/gtmb.2019.0129
  • Wu W, Amos CI, Lee JE, Wei Q, Sarin KY, Han J. Inverse relationship between vitiligo-related genes and skin cancer risk. J Invest Dermatol. 2018;138(9):2072–2075. doi:10.1016/j.jid.2018.03.1511
  • Dey-Rao R, Sinha AA. Interactome analysis of gene expression profile reveals potential novel key transcriptional regulators of skin pathology in vitiligo. Genes Immun. 2016;17(1):30–45. doi:10.1038/gene.2015.48
  • Tian J, Wang Y, Ding M, et al. The formation of melanocyte apoptotic bodies in vitiligo and the relocation of vitiligo autoantigens under oxidative stress. Oxid Med Cell Longev. 2021;2021:7617839. doi:10.1155/2021/7617839
  • Zhang XJ, Liu HS, Liang YH, et al. Association of HLA class I alleles with vitiligo in Chinese Hans. J Dermatol Sci. 2004;35(2):165–168. doi:10.1016/j.jdermsci.2004.05.003
  • Ando I, Chi HI, Nakagawa H, Otsuka F. Difference in clinical features and HLA antigens between familial and non-familial vitiligo of non-segmental type. Br J Dermatol. 1993;129(4):408–410. doi:10.1111/j.1365-2133.1993.tb03167.x
  • Buc M, Busová B, Hegyi E, Kolibásová K. Vitiligo is associated with HLA-A2 and HLA-Dw7 in the slovak populations. Folia Biol. 1996;42(1–2):23–25.
  • Orecchia G, Perfetti L, Malagoli P, Borghini F, Kipervarg Y. Vitiligo is associated with a significant increase in HLA-A30, Cw6 and DQw3 and a decrease in C4AQ0 in northern Italian patients. Dermatology. 1992;185(2):123–127. doi:10.1159/000247426
  • Ahmad S, Mohammed M, Mekala LP, Chintalapati S, Chintalapati VR. Tryptophan, a non-canonical melanin precursor: new L-tryptophan based melanin production by rubrivivax benzoatilyticus JA2. Sci Rep. 2020;10(1):8925. doi:10.1038/s41598-020-65803-6
  • Jux B, Kadow S, Luecke S, Rannug A, Krutmann J, Esser C. The aryl hydrocarbon receptor mediates UVB radiation-induced skin tanning. J Invest Dermatol. 2011;131(1):203–210. doi:10.1038/jid.2010.269
  • Burke M, Choksawangkarn W, Edwards N, Ostrand-Rosenberg S, Fenselau C. Exosomes from myeloid-derived suppressor cells carry biologically active proteins. J Proteome Res. 2014;13(2):836–843. doi:10.1021/pr400879c
  • Chaput N, Théry C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33(5):419–440. doi:10.1007/s00281-010-0233-9
  • Wang X, Shen H, He Q, Tian W, Xia A, Lu XJ. Exosomes derived from exhausted CD8+ T cells impaired the anticancer function of normal CD8+ T cells. J Med Genet. 2019;56(1):29–31. doi:10.1136/jmedgenet-2018-105439
  • Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014;41(1):89–103. doi:10.1016/j.immuni.2014.05.019
  • Kimura K, Hohjoh H, Fukuoka M, et al. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun. 2018;9(1):17. doi:10.1038/s41467-017-02406-2
  • Li Y, Wang F, Guo R, et al. Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life. 2019;71(9):1284–1292. doi:10.1002/iub.2035
  • Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases. 2018;9(1–2):95–106. doi:10.1080/21541248.2016.1264352
  • Liu Y, Xue L, Gao H, et al. Exosomal miRNA derived from keratinocytes regulates pigmentation in melanocytes. J Dermatol Sci. 2019;93(3):159–167. doi:10.1016/j.jdermsci.2019.02.001
  • Lo Cicero A, Delevoye C, Gilles-Marsens F, et al. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun. 2015;6:7506. doi:10.1038/ncomms8506
  • Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Invest Dermatol. 2014;134(4):1075–1082. doi:10.1038/jid.2013.478
  • Zalba G, San José G, Moreno MU, et al. Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension. 2001;38(6):1395–1399. doi:10.1161/hy1201.099611
  • Passi S, Grandinetti M, Maggio F, Stancato A, De Luca C. Epidermal oxidative stress in vitiligo. Pigment Cell Res. 1998;11(2):81–85. doi:10.1111/j.1600-0749.1998.tb00714.x
  • Kemp EH, Gavalas NG, Gawkrodger DJ, Weetman AP. Autoantibody responses to melanocytes in the depigmenting skin disease vitiligo. Autoimmun Rev. 2007;6(3):138–142. doi:10.1016/j.autrev.2006.09.010
  • Ali R, Ahsan MS, Azad MA, et al. Immunoglobulin levels of vitiligo patients. Pak J Pharm Sci. 2010;23(1):97–102.
  • Liu W, Liu XY, Qian YT, et al. Urinary metabolomic investigations in vitiligo patients. Sci Rep. 2020;10(1):17989. doi:10.1038/s41598-020-75135-0
  • Schallreuter KU, Rübsam K, Gibbons NC, et al. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo. J Invest Dermatol. 2008;128(4):808–815. doi:10.1038/sj.jid.5701100