191
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

In vivo Guinea Pig Model Study for Evaluating Antifungal Effect of a Dual-Diode Laser with Wavelengths of 405 Nm and 635 Nm on Dermatophytosis

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1559-1567 | Received 04 Apr 2023, Accepted 13 Jun 2023, Published online: 17 Jun 2023

References

  • Verma S, Vasani R, Reszke R, Matusiak Ł, Szepietowski JC. Prevalence and clinical characteristics of itch in epidemic-like scenario of dermatophytoses in India: a cross-sectional study. J Eur Acad Dermatol Venereol. 2020;34:180–183. doi:10.1111/jdv.15877
  • Welsh O, Vera-Cabrera L, Welsh E. Onychomycosis. Clin Dermatol. 2010;28:151–159. doi:10.1016/j.clindermatol.2009.12.006
  • Saunte DML, Pereiro-Ferreirós M, Rodríguez-Cerdeira C, et al. Emerging antifungal treatment failure of dermatophytosis in Europe: take care or it may become endemic. J Eur Acad Dermatol Venereol. 2021;35:1582–1586. doi:10.1111/jdv.17241
  • Zang K, Sullivan R, Shanks S. A retrospective study of non-thermal laser therapy for the treatment of toenail onychomycosis. J Clin Aesthet Dermatol. 2017;10:24–30.
  • Apfelberg DB, Rothermel E, Widtfeldt A, Maser MR, Lash H. Preliminary report on use of carbon dioxide laser in podiatry. J Am Podiatry Assoc. 1984;74:509–513.
  • Borovoy M, Fuller TA, Holtz P, Kaczander BI. Laser surgery in podiatric medicine-present and future. J Foot Surg. 1983;22:353–357.
  • Rothermel E, Apfelberg DB. Carbon dioxide laser use for certain diseases of the toenails. Clin Podiatr Med Surg. 1987;4:809–821.
  • Bristow IR. The effectiveness of lasers in the treatment of onychomycosis: a systematic review. J Foot Ankle Res. 2014;7:34. doi:10.1186/1757-1146-7-34
  • Gupta AK, Venkataraman M, Quinlan EM. Efficacy of lasers for the management of dermatophyte toenail onychomycosis. J Am Podiatr Med Assoc. 2022;112:20–236. doi:10.7547/20-236
  • Zhang J, Lin P, Li J, Guo C, Zhai J, Zhang Y. Efficacy of laser therapy combined with topical antifungal agents for onychomycosis: a systematic review and meta-analysis of randomised controlled trials. Lasers Med Sci. 2022;37:2557–2569. doi:10.1007/s10103-022-03561-9
  • Choi MJ, Zheng Z, Goo B, Cho SB. Antifungal effects of a 1444-nm neodymium:yttrium-aluminum-garnet laser on onychomycosis: a pilot study. J Dermatolog Treat. 2014;25:294–297. doi:10.3109/09546634.2012.714455
  • Waibel J, Wulkan AJ, Rudnick A. Prospective efficacy and safety evaluation of laser treatments with real-time temperature feedback for fungal onychomycosis. J Drugs Dermatol. 2013;12:1237–1242.
  • Cao Y, Xu S, Kong W, Xu Y, Fang H. Clinical retrospective analysis of long-pulsed 1064-nm Nd:YAG laser in the treatment of onychomycosis and its effect on the ultrastructure of fungus pathogen. Lasers Med Sci. 2020;35:429–437. doi:10.1007/s10103-019-02840-2
  • Bhatta AK, Keyal U, Wang X, Gellén E. A review of the mechanism of action of lasers and photodynamic therapy for onychomycosis. Lasers Med Sci. 2017;32:469–474. doi:10.1007/s10103-016-2110-9
  • Francuzik W, Fritz K, Salavastru C. Laser therapies for onychomycosis-critical evaluation of methods and effectiveness. J Eur Acad Dermatol Venereol. 2016;30:936–942. doi:10.1111/jdv.13593
  • Liu HN, Lee DD, Wong CK. KONCPA: a new method for diagnosing tinea unguium. Dermatology. 1993;187:166–168. doi:10.1159/000247235
  • Haghani I, Shokohi T, Hajheidari Z, Khalilian A, Aghili SR. Comparison of diagnostic methods in the evaluation of onychomycosis. Mycopathologia. 2013;175:315–321. doi:10.1007/s11046-013-9620-9
  • Marquet F, Grandclaude MC, Ferrari E, Champmartin C. Capacity of an in vitro rat skin model to predict human dermal absorption: influences of aging and anatomical site. Toxicol In Vitro. 2019;61:104623. doi:10.1016/j.tiv.2019.104623
  • Kottferová L, Molnár L, Čonková E, et al. Fungal flora in asymptomatic pet Guinea pigs and rabbits. Animals. 2022;12:2387. doi:10.3390/ani12182387
  • Vangeel I, Pasmans F, Vanrobaeys M, De Herdt P, Haesebrouck F. Prevalence of dermatophytes in asymptomatic Guinea pigs and rabbits. Vet Rec. 2000;146:440–441. doi:10.1136/vr.146.15.440
  • Lee HS, Lee Y, Jeong U, Oh S, Hwang CW, Kang HW. Transoral low-level laser therapy via a cylindrical device to treat oral ulcers in a rodent model. Lasers Surg Med. 2020;52:647–652. doi:10.1002/lsm.23203
  • Lim W, Lee S, Kim I, et al. The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med. 2007;39:614–621. doi:10.1002/lsm.20533
  • Wagner VP, Curra M, Webber LP, et al. Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats. Lasers Med Sci. 2016;31:665–671. doi:10.1007/s10103-016-1904-0
  • Ghate VS, Ng KS, Zhou W, et al. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures. Int J Food Microbiol. 2013;166:399–406. doi:10.1016/j.ijfoodmicro.2013.07.018
  • Masson-Meyers DS, Bumah VV, Biener G, Raicu V, Enwemeka CS. The relative antimicrobial effect of blue 405 nm LED and blue 405-nm laser on methicillin-resistant Staphylococcus aureus in vitro. Lasers Med Sci. 2015;30:2265–2271. doi:10.1007/s10103-015-1799-1
  • Landsman AS, Robbins AH, Angelini PF, et al. Treatment of mild, moderate, and severe onychomycosis using 870- and 930-nm light exposure. J Am Podiatr Med Assoc. 2010;100:166–177.