313
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Lipid Metabolism Reprogramming of Immune Cells in Acne: An Update

, ORCID Icon, ORCID Icon, &
Pages 2391-2398 | Received 05 Jun 2023, Accepted 15 Aug 2023, Published online: 01 Sep 2023

References

  • Kostecka M, Kostecka J, Szwed-Gułaga O, Jackowska I, Kostecka-Jarecka J. The impact of common acne on the well-being of young people aged 15–35 years and the influence of nutrition knowledge and diet on acne development. Nutrients. 2022;14(24):5293. doi:10.3390/nu14245293
  • Kohn AH, Pourali SP, Rajkumar JR, Hekmatjah J, Armstrong AW. Mental health outcomes and their association to race and ethnicity in acne patients: a population-based study. J Am Acad Dermatol. 2022;87(1):140–142. doi:10.1016/j.jaad.2021.06.866
  • Bakry OA, El Shazly RM, El Farargy SM, Kotb D. Role of hormones and blood lipids in the pathogenesis of acne vulgaris in non-obese, non-hirsute females. Indian Dermatol Online J. 2014;5(5):S9–S16. doi:10.4103/2229-5178.144506
  • Zouboulis CC, Jourdan E, Picardo M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol Venereol. 2014;28(5):527–532. doi:10.1111/jdv.12298
  • Tanghetti EA. The role of inflammation in the pathology of acne. J Clin Aesthet Dermatol. 2013;6(9):27–35.
  • Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368(6487). doi:10.1126/science.aaw5473
  • Wertz PW. Epidermal lipids. Semin Dermatol. 1992;11(2):106–113.
  • Zhou M, Gan Y, He C, Chen Z, Jia Y. Lipidomics reveals skin surface lipid abnormity in acne in young men. Br J Dermatol. 2018;179(3):732–740. doi:10.1111/bjd.16655
  • Zhou M, Yang M, Zheng Y, et al. Skin surface lipidomics revealed the correlation between lipidomic profile and grade in adolescent acne. J Cosmet Dermatol. 2020;19(12):3349–3356. doi:10.1111/jocd.13374
  • Scieszka D, Lin YH, Li W, Choudhury S, Yu Y, Freire M. NETome: a model to decode the human genome and proteome of neutrophil extracellular traps. Sci Data. 2022;9(1):702. doi:10.1038/s41597-022-01798-1
  • Almaraz-Arreortua A, Sosa-Luis SA, Ríos-Ríos WJ, et al. Morphological and compositional analysis of neutrophil extracellular traps induced by microbial and chemical stimuli. J Vis Exp. 2022; 189. doi:10.3791/64522
  • Vorobjeva N, Dagil Y, Pashenkov M, Pinegin B, Chernyak B. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps. Int Immunopharmacol. 2022;114:109448. doi:10.1016/j.intimp.2022.109448
  • Chen H, Xu X, Tang Q, et al. (+)-Borneol inhibits the generation of reactive oxygen species and neutrophil extracellular traps induced by phorbol-12-myristate-13-acetate. Front Pharmacol. 2022;13:1023450. doi:10.3389/fphar.2022.1023450
  • Kobpornchai P, Reamtong O, Phuphisut O, Malaitong P, Adisakwattana P. Serine protease inhibitor derived from Trichinella spiralis (TsSERP) inhibits neutrophil elastase and impairs human neutrophil functions. Front Cell Infect Microbiol. 2022;12:919835. doi:10.3389/fcimb.2022.919835
  • Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E. Crosslinking of membrane CD13 in human neutrophils mediates phagocytosis and production of reactive oxygen species, neutrophil extracellular traps and proinflammatory cytokines. Front Immunol. 2022;13:994496. doi:10.3389/fimmu.2022.994496
  • Hirschfeld J, Chicca IJ, Moonen C, et al. Characterization, quantification, and visualization of neutrophil extracellular traps. Methods Mol Biol. 2023;2588:451–472.
  • Artigas-Jerónimo S, González-García A, de la Fuente J, et al. Low NETosis induced in anaplasma phagocytophilum-infected cells. Vaccines. 2022;10(10):1756. doi:10.3390/vaccines10101756
  • Saito S, Cao DY, Okuno A, et al. Creatine supplementation enhances immunological function of neutrophils by increasing cellular adenosine triphosphate. Biosci Microbiota Food Health. 2022;41(4):185–194. doi:10.12938/bmfh.2022-018
  • Yao H, Cao G, Liu Z, et al. Inhibition of netosis with PAD inhibitor attenuates endotoxin shock induced systemic inflammation. Int J Mol Sci. 2022;23(21):13264. doi:10.3390/ijms232113264
  • Yang S, Feng Y, Chen L, et al. Disulfiram accelerates diabetic foot ulcer healing by blocking NET formation via suppressing the NLRP3/Caspase-1/GSDMD pathway. Transl Res. 2022;254:115–127.
  • Yang L, Shou YH, Yang YS, Xu JH, Fang D. Elucidating the immune infiltration in acne and its comparison with rosacea by integrated bioinformatics analysis. PLoS One. 2021;16(3):e0248650. doi:10.1371/journal.pone.0248650
  • Watanabe K, Yoshino T, Takahashi M, et al. Clinical significance of neutrophil gelatinase-associated lipocalin and galectin-7 in tape-stripped stratum corneum of acne vulgaris. J Dermatol. 2018;45(5):618–621. doi:10.1111/1346-8138.14261
  • Jaberi SA, Cohen A, D’Souza C, et al. Lipocalin-2: structure, function, distribution and role in metabolic disorders. Biomed Pharmacother. 2021;142:112002. doi:10.1016/j.biopha.2021.112002
  • Morales-Valencia J, Lau L, Martí-Nin T, Ozerdem U, David G. Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression. Oncogene. 2022;41(38):4361–4370. doi:10.1038/s41388-022-02433-4
  • Huang Y, Zhang N, Xie C, et al. Lipocalin-2 in neutrophils induces ferroptosis in septic cardiac dysfunction via increasing labile iron pool of cardiomyocytes. Front Cardiovasc Med. 2022;9:922534. doi:10.3389/fcvm.2022.922534
  • Li Q, Ru X, Yang Y, et al. Lipocalin-2-mediated insufficient oligodendrocyte progenitor cell remyelination for white matter injury after subarachnoid hemorrhage via SCL22A17 receptor/early growth response protein 1 signaling. Neurosci Bull. 2022;38(12):1457–1475. doi:10.1007/s12264-022-00906-w
  • Kim HY, Yoo YH. Recombinant FGF21 attenuates polychlorinated biphenyl-induced NAFLD/NASH by modulating hepatic lipocalin-2 expression. Int J Mol Sci. 2022;23(16):8899.
  • Shin HJ, Jin Z, An HS, et al. Lipocalin-2 deficiency reduces hepatic and hippocampal triggering receptor expressed on myeloid cells-2 expressions in high-fat diet/streptozotocin-induced diabetic mice. Brain Sci. 2022;12(7):878. doi:10.3390/brainsci12070878
  • Gan J, Zheng Y, Yu Q, et al. Serum lipocalin-2 levels are increased and independently associated with early-stage renal damage and carotid atherosclerotic plaque in patients with T2DM. Front Endocrinol. 2022;13:855616. doi:10.3389/fendo.2022.855616
  • Betten R, Scharner B, Probst S, et al. Tonicity inversely modulates lipocalin-2 (Lcn2/24p3/NGAL) receptor (SLC22A17) and Lcn2 expression via Wnt/β-catenin signaling in renal inner medullary collecting duct cells: implications for cell fate and bacterial infection. Cell Commun Signal. 2018;16(1):74. doi:10.1186/s12964-018-0285-3
  • Ghosh S, Shang P, Yazdankhah M, et al. Activating the AKT2-nuclear factor-κB-lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration. J Pathol. 2017;241(5):583–588. doi:10.1002/path.4870
  • Eilenberg W, Stojkovic S, Piechota-Polanczyk A, et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is associated with symptomatic carotid atherosclerosis and drives pro-inflammatory state in vitro. Eur J Vasc Endovasc Surg. 2016;51(5):623–631. doi:10.1016/j.ejvs.2016.01.009
  • K L, M D S S, H M S. Action of BjussuMP-II, a snake venom metalloproteinase isolated from Bothrops jararacussu venom, on human neutrophils. Toxicon. 2022;222:106992. doi:10.1016/j.toxicon.2022.106992
  • Bonneau S, Landry C, Bégin S et al, et al. Correlation between Neutrophil Extracellular Traps (NETs) expression and primary graft dysfunction following human lung transplantation. Cells. 2022;11(21):3420. doi:10.3390/cells11213420
  • Mistry P, Carmona-Rivera C, Ombrello AK, et al. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome. Ann Rheum Dis. 2018;77(12):1825–1833. doi:10.1136/annrheumdis-2018-213746
  • Deng X, Wang JW, Wu Q, Pan L, Mou T, Du CY. Lipocalin 2 as a useful biomarker for risk stratification in patients with acute cholangitis: a single-center prospective and observational study. Clin Chim Acta. 2022;533:22–30. doi:10.1016/j.cca.2022.05.022
  • Yadav SK, Ito N, Mindur JE, et al. Fecal Lcn-2 level is a sensitive biological indicator for gut dysbiosis and intestinal inflammation in multiple sclerosis. Front Immunol. 2022;13:1015372. doi:10.3389/fimmu.2022.1015372
  • Deis J, Lin TY, Bushman T, Chen X. Lipocalin 2 deficiency alters prostaglandin biosynthesis and mTOR signaling regulation of thermogenesis and lipid metabolism in adipocytes. Cells. 2022;11(9):1535. doi:10.3390/cells11091535
  • Moroni F, Ammirati E, Norata GD, Magnoni M, Camici PG. The role of monocytes and macrophages in human atherosclerosis, plaque neoangiogenesis, and atherothrombosis. Mediators Inflamm. 2019;2019:7434376. doi:10.1155/2019/7434376
  • Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35. doi:10.1038/nri978
  • Ozlu E, Karadag AS, Ozkanli S, et al. Comparison of TLR-2, TLR-4, and antimicrobial peptide levels in different lesions of acne vulgaris. Cutan Ocul Toxicol. 2016;35(4):300–309. doi:10.3109/15569527.2015.1120742
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. doi:10.3389/fimmu.2014.00461
  • Harder J, Tsuruta D, Murakami M, Kurokawa I. What is the role of antimicrobial peptides (AMP) in acne vulgaris. Exp Dermatol. 2013;22(6):386–391. doi:10.1111/exd.12159
  • Owen AM, Luan L, Burelbach KR, et al. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. Front Immunol. 2022;13:1044662. doi:10.3389/fimmu.2022.1044662
  • Yeudall S, Upchurch CM, Seegren PV, et al. Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism. Sci Adv. 2022;8(47):eabq1984. doi:10.1126/sciadv.abq1984
  • Chuang LT, Huang WC, Hou YC, et al. Suppressive effect of two cucurbitane-type triterpenoids from momordica charantia on cutibacterium acnes-induced inflammatory responses in human THP-1 monocytic cell and mouse models. Molecules. 2021;26(3):579. doi:10.3390/molecules26030579
  • Fang F, Xie Z, Quan J, Wei X, Wang L, Yang L. Baicalin suppresses Propionibacterium acnes-induced skin inflammation by downregulating the NF-κB/MAPK signaling pathway and inhibiting activation of NLRP3 inflammasome. Braz J Med Biol Res. 2020;53(12):e9949. doi:10.1590/1414-431x20209949
  • Chen Y, Cao P, Xiao Z, Ruan Z. m(6)A methyltransferase METTL3 relieves cognitive impairment of hyperuricemia mice via inactivating MyD88/NF-κB pathway mediated NLRP3-ASC-Caspase1 inflammasome. Int Immunopharmacol. 2022;113:109375. doi:10.1016/j.intimp.2022.109375
  • Hayakawa S, Tamura A, Nikiforov N, et al. Activated cholesterol metabolism is integral for innate macrophage responses by amplifying Myd88 signaling. JCI Insight. 2022;7(22). doi:10.1172/jci.insight.138539
  • Tang L, Kuang C, Shan D, et al. The ethanol extract of Edgeworthia gardneri (Wall.) Meisn attenuates macrophage foam cell formation and atherogenesis in ApoE(-/-) mice. Front Cardiovasc Med. 2022;9:1023438. doi:10.3389/fcvm.2022.1023438
  • Feng J, Li L, Ou Z, et al. IL-25 stimulates M2 macrophage polarization and thereby promotes mitochondrial respiratory capacity and lipolysis in adipose tissues against obesity. Cell Mol Immunol. 2018;15(5):493–505. doi:10.1038/cmi.2016.71
  • Huang SC, Everts B, Ivanova Y, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15(9):846–855. doi:10.1038/ni.2956
  • Profumo E, Maggi E, Arese M, et al. Neuropeptide Y promotes human M2 macrophage polarization and enhances p62/SQSTM1-dependent autophagy and NRF2 activation. Int J Mol Sci. 2022;23(21):13009. doi:10.3390/ijms232113009
  • Elsaie ML, Aly DG. The immunogenetics of acne. Adv Exp Med Biol. 2022;1367:137–154.
  • Freitas Filho EG, Jaca L, Baeza LC, et al. Proteomic analysis of lipid rafts from RBL-2H3 mast cells. Int J Mol Sci. 2019;20(16):3904. doi:10.3390/ijms20163904
  • Zhang W, Xu L, Zhu L, Liu Y, Yang S, Zhao M. Lipid droplets, the central hub integrating cell metabolism and the immune system. Front Physiol. 2021;12:746749. doi:10.3389/fphys.2021.746749
  • Li J, Li L, Liu R, et al. Integrative lipidomic features identify plasma lipid signatures in chronic urticaria. Front Immunol. 2022;13:933312. doi:10.3389/fimmu.2022.933312
  • Taketomi Y, Endo Y, Higashi T, et al. Mast Cell-specific deletion of group III secreted phospholipase A(2) impairs mast cell maturation and functions. Cells. 2021;10(7):1691. doi:10.3390/cells10071691
  • Petrosino S, Schiano Moriello A, Verde R, et al. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J Neuroinflammation. 2019;16(1):274. doi:10.1186/s12974-019-1671-5
  • Branche E, Wang YT, Viramontes KM, et al. SREBP2-dependent lipid gene transcription enhances the infection of human dendritic cells by Zika virus. Nat Commun. 2022;13(1):5341. doi:10.1038/s41467-022-33041-1
  • Veglia F, Tyurin VA, Mohammadyani D, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017;8(1):2122. doi:10.1038/s41467-017-02186-9
  • Chen IC, Awasthi D, Hsu CL, et al. High-fat diet-induced obesity alters dendritic cell homeostasis by enhancing mitochondrial fatty acid oxidation. J Immunol. 2022;209(1):69–76. doi:10.4049/jimmunol.2100567
  • Sardana K, Verma G. Propionibacterium acnes and the Th1/Th17 axis, implications in acne pathogenesis and treatment. Indian J Dermatol. 2017;62(4):392–394. doi:10.4103/ijd.IJD_483_16
  • Antiga E, Verdelli A, Bonciani D, Bonciolini V, Caproni M, Fabbri P. Acne: a new model of immune-mediated chronic inflammatory skin disease. G Ital Dermatol Venereol. 2015;150(2):247–254.
  • Jiang J, Meng S, Li L, Duan X, Xu H, Li S. Correlation of acetyl-coenzyme A carboxylase 1 with Th17 and Th1 cells, serving as a potential prognostic biomarker for acute ischemic stroke patients. J Clin Lab Anal. 2022;36(10):e24607. doi:10.1002/jcla.24607
  • Komai-Koma M, Ji Y, Cao H, Liu Z, McSharry C, Xu D. Monophosphoryl lipid A directly regulates Th1 cytokine production in human CD4(+) T-cells through Toll-like receptor 2 and 4. Immunobiology. 2021;226(5):152132. doi:10.1016/j.imbio.2021.152132
  • Derada Troletti C, Enzmann G, Chiurchiù V, et al. Pro-resolving lipid mediator lipoxin A(4) attenuates neuro-inflammation by modulating T cell responses and modifies the spinal cord lipidome. Cell Rep. 2021;35(9):109201. doi:10.1016/j.celrep.2021.109201
  • Berod L, Friedrich C, Nandan A, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20(11):1327–1333. doi:10.1038/nm.3704
  • Kim W, Barhoumi R, McMurray DN, Chapkin RS. Dietary fish oil and DHA down-regulate antigen-activated CD4 + T-cells while promoting the formation of liquid-ordered mesodomains. Br J Nutr. 2014;111(2):254–260. doi:10.1017/S0007114513002444
  • Cai F, Jin S, Chen G, Dobrzyn A. The effect of lipid metabolism on CD4(+) T cells. Mediators Inflamm. 2021;2021:6634532. doi:10.1155/2021/6634532
  • Bai A, Guo Y. Acid sphingomyelinase mediates human CD4(+) T-cell signaling: potential roles in T-cell responses and diseases. Cell Death Dis. 2017;8(7):e2963. doi:10.1038/cddis.2017.360
  • Kue CS, Lim HX, Jung MY, Hong HJ, Cho D, Kim TS. C6-ceramide in combination with transforming growth factor-β enhances Treg cell differentiation and stable FoxP3 expression in vitro and in vivo. Immunobiology. 2013;218(7):952–959. doi:10.1016/j.imbio.2012.11.003
  • Nicholas DA, Proctor EA, Agrawal M, et al. Fatty acid metabolites combine with reduced β oxidation to activate Th17 inflammation in human type 2 diabetes. Cell Metab. 2019;30(3):447–461.e5. doi:10.1016/j.cmet.2019.07.004
  • Iwata S, Zhang M, Hao H, et al. Enhanced fatty acid synthesis leads to subset imbalance and IFN-γ overproduction in T helper 1 cells. Front Immunol. 2020;11:593103. doi:10.3389/fimmu.2020.593103
  • Carlavan I, Bertino B, Rivier M, et al. Atrophic scar formation in patients with acne involves long-acting immune responses with plasma cells and alteration of sebaceous glands. Br J Dermatol. 2018;179(4):906–917. doi:10.1111/bjd.16680
  • Chancheewa B, Asawanonda P, Noppakun N, Kumtornrut C. Myofibroblasts, B Cells, and Mast Cells in Different Types of Long-Standing Acne Scars. Skin Appendage Disord. 2022;8(6):469–475. doi:10.1159/000524566
  • Gurzell EA, Teague H, Harris M, Clinthorne J, Shaikh SR, Fenton JI. DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function. J Leukoc Biol. 2013;93(4):463–470. doi:10.1189/jlb.0812394
  • Kawasaki K, Abe M, Tada F, et al. Blockade of B-cell-activating factor signaling enhances hepatic steatosis induced by a high-fat diet and improves insulin sensitivity. Lab Invest. 2013;93(3):311–321. doi:10.1038/labinvest.2012.176
  • Guillamat-Prats R, Hering D, Derle A, et al. GPR55 in B cells limits atherosclerosis development and regulates plasma cell maturation. Nat Cardiovasc Res. 2022;1(11):1056–1071. doi:10.1038/s44161-022-00155-0
  • Layton AM, Ravenscroft J. Adolescent acne vulgaris: current and emerging treatments. Lancet Child Adolesc Health. 2022;7(2):136–144. doi:10.1016/S2352-4642(22)00314-5
  • Abdelwahab AA, Omar G, Hamdino M. A combined subcision approach with either fractional CO(2) laser (10,600 nm) or cross-linked hyaluronic acid versus subcision alone in atrophic post-acne scar treatment. Lasers Med Sci. 2022;38(1):20. doi:10.1007/s10103-022-03677-y
  • Başak PY, Cetin ES, Gürses I, Ozseven AG. The effects of systemic isotretinoin and antibiotic therapy on the microbial floras in patients with acne vulgaris. J Eur Acad Dermatol Venereol. 2013;27(3):332–336. doi:10.1111/j.1468-3083.2011.04397.x
  • Leheta TM, Abdel Hay RM, El Garem YF. Deep peeling using phenol versus percutaneous collagen induction combined with trichloroacetic acid 20% in atrophic post-acne scars; a randomized controlled trial. J Dermatolog Treat. 2014;25(2):130–136. doi:10.3109/09546634.2012.674192
  • Leheta TM, Abdel Hay RM, Hegazy RA, El Garem YF. Do combined alternating sessions of 1540 nm nonablative fractional laser and percutaneous collagen induction with trichloroacetic acid 20% show better results than each individual modality in the treatment of atrophic acne scars? A randomized controlled trial. J Dermatolog Treat. 2014;25(2):137–141. doi:10.3109/09546634.2012.698249
  • Baroni A, Ruocco E, Russo T, et al. The use of traditional Chinese medicine in some dermatologic diseases: part I--Acne, psoriasis, and atopic dermatitis. Skinmed. 2015;13(1):32–38; quiz 39.