365
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genome-Wide Association Study of Alopecia Areata in Taiwan: The Conflict Between Individuals and Hair Follicles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2597-2612 | Received 04 Jul 2023, Accepted 14 Sep 2023, Published online: 21 Sep 2023

References

  • Wei Y-H, Tai Y-H, Dai Y-X, Chang Y-T, Chen T-J, Chen M-H. Bidirectional association between alopecia areata and atopic dermatitis: a population-based cohort study in Taiwan. Clin Exp Allergy. 2020;50(12):1406–1414. doi:10.1111/cea.13729
  • Chiu YW, Chen YD, Hua TC, Wu CH, Liu HN, Chang YT. Comorbid autoimmune diseases in patients with pemphigus: a nationwide case-control study in Taiwan. Eur J Dermatol. 2017;27(4):375–381. doi:10.1684/ejd.2017.3060
  • Dai YX, Yeh FY, Shen YJ, et al. Cigarette smoking, alcohol consumption, and risk of alopecia areata: a population-based cohort study in Taiwan. Am J Clin Dermatol. 2020;21(6):901–911. doi:10.1007/s40257-020-00547-7
  • Harries M, Macbeth AE, Holmes S, et al. The epidemiology of alopecia areata: a population-based cohort study in UK primary care. Br J Dermatol. 2022;186(2):257–265. doi:10.1111/bjd.20628
  • Rajabi F, Drake LA, Senna MM, Rezaei N. Alopecia areata: a review of disease pathogenesis. Br J Dermatol. 2018;179(5):1033–1048. doi:10.1111/bjd.16808
  • Friedli A, Harms M. [Alopecia areata]. Ther Umsch. 2002;59(5):233–237. German. doi:10.1024/0040-5930.59.5.233
  • Redondo P, Vicente J, Espana A, Subira ML, De Felipe I, Quintanilla E. Photo-induced toxic epidermal necrolysis caused by clobazam. Br J Dermatol. 1996;135(6):999–1002. doi:10.1046/j.1365-2133.1996.d01-1111.x
  • Muntyanu A, Gabrielli S, Donovan J, et al. The burden of alopecia areata: a scoping review focusing on quality of life, mental health and work productivity. J Eur Acad Dermatol Venereol. 2023. doi:10.1111/jdv.18926
  • van Dalen M, Muller KS, Kasperkovitz-Oosterloo JM, Okkerse JME, Pasmans S. Anxiety, depression, and quality of life in children and adults with alopecia areata: a systematic review and meta-analysis. Front Med. 2022;9:1054898. doi:10.3389/fmed.2022.1054898
  • Ting H-C, Ma S-H, Tai Y-H, et al. Association between alopecia areata and retinal diseases: a nationwide population-based cohort study. J Am Acad Dermatol. 2022;87(4):771–778. doi:10.1016/j.jaad.2021.10.045
  • Dai Y-X, Tai Y-H, Chang Y-T, Chen T-J, Chen M-H. Bidirectional association between alopecia areata and thyroid diseases: a nationwide population-based cohort study. Arch Dermatol Res. 2021;313(5):339–346. doi:10.1007/s00403-020-02109-7
  • Lin WL, Lin WC, Jung SM, Yang CH, Hong HS. Breast cancer metastasized to the scalp mimicking alopecia areata: alopecia neoplastica. Breast J. 2007;13(1):94–95. doi:10.1111/j.1524-4741.2006.00372.x
  • Chang TH, Tai YH, Dai YX, Chang YT, Chen MH. Increased risk of alopecia areata among patients with polycystic ovary syndrome: a population-based cohort study. J Dermatol. 2021;48(2):242–244. doi:10.1111/1346-8138.15659
  • Ito T. Hair follicle is a target of stress hormone and autoimmune reactions. J Dermatol Sci. 2010;60(2):67–73. doi:10.1016/j.jdermsci.2010.09.006
  • Ito T, Meyer KC, Ito N, Paus R. Immune privilege and the skin. Curr Dir Autoimmun. 2008;10:27–52. doi:10.1159/000131412
  • Xiao FL, Yang S, Yan KL, et al. Association of HLA class I alleles with aloplecia areata in Chinese Hans. J Dermatol Sci. 2006;41(2):109–119. doi:10.1016/j.jdermsci.2005.07.008
  • Tazi-Ahnini R, Cork MJ, Wengraf D, et al. Notch4, a non-HLA gene in the MHC is strongly associated with the most severe form of alopecia areata. Hum Genet. 2003;112(4):400–403. doi:10.1007/s00439-002-0898-9
  • Akar A, Orkunoglu E, Sengul A, Ozata M, Gur AR. HLA class II alleles in patients with alopecia areata. Eur J Dermatol. 2002;12(3):236–239.
  • Konig A, Happle R, Hoffmann R. IFN-gamma-induced HLA-DR but not ICAM-1 expression on cultured dermal papilla cells is downregulated by TNF-alpha. Arch Dermatol Res. 1997;289(8):466–470. doi:10.1007/s004030050222
  • de Jong A, Jabbari A, Dai Z, et al. High-throughput T cell receptor sequencing identifies clonally expanded CD8+ T cell populations in alopecia areata. JCI Insight. 2018;3(19). doi:10.1172/jci.insight.121949
  • Ghraieb A, Keren A, Ginzburg A, et al. iNKT cells ameliorate human autoimmunity: lessons from alopecia areata. J Autoimmun. 2018;91:61–72. doi:10.1016/j.jaut.2018.04.001
  • Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13:955035. doi:10.3389/fimmu.2022.955035
  • Xing L, Dai Z, Jabbari A, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–1049. doi:10.1038/nm.3645
  • Dai Z, Sezin T, Chang Y, Lee EY, Wang EHC, Christiano AM. Induction of T cell exhaustion by JAK1/3 inhibition in the treatment of alopecia areata. Front Immunol. 2022;13:955038. doi:10.3389/fimmu.2022.955038
  • Del Duca E, Ruano Ruiz J, Pavel AB, et al. Frontal fibrosing alopecia shows robust T helper 1 and Janus kinase 3 skewing. Br J Dermatol. 2020;183(6):1083–1093. doi:10.1111/bjd.19040
  • Simakou T, Butcher JP, Reid S, Henriquez FL. Alopecia areata: a multifactorial autoimmune condition. J Autoimmun. 2019;98:74–85. doi:10.1016/j.jaut.2018.12.001
  • Jacobsen EW, Pedersen OB, Andorsdottir G, Jemec GBE, Bryld LE. Family recurrence risk of alopecia areata in the Faroe Islands. Clin Exp Dermatol. 2019;44(7):e224–e229. doi:10.1111/ced.13974
  • Martinez-Mir A, Zlotogorski A, Ott J, Gordon D, Christiano AM. Genetic linkage studies in alopecia areata. J Investig Dermatol Symp Proc. 2003;8(2):199–203. doi:10.1046/j.1087-0024.2003.00809.x
  • Kavak A, Baykal C, Ozarmagan G, Akar U. HLA in alopecia areata. Int J Dermatol. 2000;39(8):589–592. doi:10.1046/j.1365-4362.2000.00921.x
  • Kim HJ, Kazmi SZ, Kang T, et al. Familial risk and incidence of alopecia areata among first degree relatives-A nationwide population-based study in Korea. J Am Acad Dermatol. 2021;85(5):1360–1362. doi:10.1016/j.jaad.2020.10.063
  • Martinez-Mir A, Zlotogorski A, Gordon D, et al. Genomewide scan for linkage reveals evidence of several susceptibility loci for alopecia areata. Am J Hum Genet. 2007;80(2):316–328. doi:10.1086/511442
  • Hashimoto K, Yamada Y, Sekiguchi K, Matsuda S, Mori S, Matsumoto T. Induction of alopecia areata in C3H/HeJ mice using cryopreserved lymphocytes. J Dermatol Sci. 2021;102(3):177–183. doi:10.1016/j.jdermsci.2021.04.009
  • Liu TY, Lin CF, Wu HT, et al. Comparison of multiple imputation algorithms and verification using whole-genome sequencing in the CMUH genetic biobank. Biomedicine. 2021;11(4):57–65. doi:10.37796/2211-8039.1302
  • Dai YX, Tai YH, Chen CC, Chang YT, Chen TJ, Chen MH. Bidirectional association between alopecia areata and sleep disorders: a population-based cohort study in Taiwan. Sleep Med. 2020;75:112–116. doi:10.1016/j.sleep.2020.06.015
  • Ho CY, Wu CY, Chen JY, Wu CY. Clinical and genetic aspects of alopecia areata: a cutting edge review. Genes. 2023;14(7). doi:10.3390/genes14071362
  • Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–117. doi:10.1038/nature09114
  • Betz RC, Petukhova L, Ripke S, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun. 2015;6:5966. doi:10.1038/ncomms6966
  • Liao WL, Liu TY, Cheng CF, et al. Analysis of HLA variants and graves’ disease and its comorbidities using a high resolution imputation system to examine electronic medical health records. Front Endocrinol. 2022;13:842673. doi:10.3389/fendo.2022.842673
  • Lu HF, Liu TY, Chou YP, et al. Comprehensive characterization of pharmacogenes in a Taiwanese Han population. Front Genet. 2022;13:948616. doi:10.3389/fgene.2022.948616
  • Redler S, Albert F, Brockschmidt FF, et al. Investigation of selected cytokine genes suggests that IL2RA and the TNF/LTA locus are risk factors for severe alopecia areata. Br J Dermatol. 2012;167(6):1360–1365. doi:10.1111/bjd.12004
  • Forstbauer LM, Brockschmidt FF, Moskvina V, et al. Genome-wide pooling approach identifies SPATA5 as a new susceptibility locus for alopecia areata. Eur J Hum Genet. 2012;20(3):326–332. doi:10.1038/ejhg.2011.185
  • Megiorni F, Pizzuti A, Mora B, et al. Genetic association of HLA-DQB1 and HLA-DRB1 polymorphisms with alopecia areata in the Italian population. Br J Dermatol. 2011;165(4):823–827. doi:10.1111/j.1365-2133.2011.10466.x
  • AlFadhli S, Nanda A. Genetic evidence for the involvement of NOTCH4 in rheumatoid arthritis and alopecia areata. Immunol Lett. 2013;150(1–2):130–133. doi:10.1016/j.imlet.2013.01.002
  • Lee CH, Ko AM, Warnakulasuriya S, et al. Population burden of betel quid abuse and its relation to oral premalignant disorders in South, Southeast, and East Asia: an Asian Betel-quid Consortium study. Am J Public Health. 2012;102(3):e17–24. doi:10.2105/AJPH.2011.300521
  • Hennig EE, Kluska A, Piatkowska M, et al. GWAS links new variant in long non-coding RNA LINC02006 with colorectal cancer susceptibility. Biology. 2021;10(6). doi:10.3390/biology10060465
  • Xia L, Ou J, Li K, et al. Genome-wide association analysis of autism identified multiple loci that have been reported as strong signals for neuropsychiatric disorders. Autism Res. 2020;13(3):382–396. doi:10.1002/aur.2229
  • Yamada Y, Sakuma J, Takeuchi I, et al. Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies. Int J Mol Med. 2017;39(5):1091–1100. doi:10.3892/ijmm.2017.2927
  • Chen J, Zhang J, Hong L, Zhou Y. EGFLAM correlates with cell proliferation, migration, invasion and poor prognosis in glioblastoma. Cancer Biomark. 2019;24(3):343–350. doi:10.3233/CBM-181740
  • Ranganathan S, Noyes NC, Migliorini M, et al. LRAD3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking. J Neurosci. 2011;31(30):10836–10846. doi:10.1523/JNEUROSCI.5065-10.2011
  • Ma H, Kim AS, Kafai NM, et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature. 2020;588(7837):308–314. doi:10.1038/s41586-020-2915-3
  • Liu PH, Chuang GT, Hsiung CN, et al. A genome-wide association study for melatonin secretion. Sci Rep. 2022;12(1):8025. doi:10.1038/s41598-022-12084-w
  • Petukhova L, Christiano AM. Functional interpretation of genome-wide association study evidence in alopecia areata. J Invest Dermatol. 2016;136(1):314–317. doi:10.1038/JID.2015.402
  • Duvefelt K, Anderson M, Fogdell-Hahn A, Hillert J. A NOTCH4 association with multiple sclerosis is secondary to HLA-DR*1501. Tissue Antigens. 2004;63(1):13–20. doi:10.1111/j.1399-0039.2004.00135.x
  • Ando A, Shigenari A, Naruse TK, et al. Triplet repeat polymorphism within the NOTCH4 gene located near the junction of the HLA class II and class III regions in narcolepsy. Tissue Antigens. 1997;50(6):646–649. doi:10.1111/j.1399-0039.1997.tb02924.x
  • Lopez-Lopez S, Romero de Avila MJ, Hernandez de Leon NC, et al. NOTCH4 exhibits anti-inflammatory activity in activated macrophages by interfering with interferon-gamma and TLR4 signaling. Front Immunol. 2021;12:734966. doi:10.3389/fimmu.2021.734966
  • Ryu S, Lee Y, Hyun MY, et al. Mycophenolate antagonizes IFN-gamma-induced catagen-like changes via beta-catenin activation in human dermal papilla cells and hair follicles. Int J Mol Sci. 2014;15(9):16800–16815. doi:10.3390/ijms150916800
  • Rajabi F, Amoli MM, Robati RM, Almasi-Nasrabadi M, Jabalameli N, Moravvej H. The association between genetic variation in wnt transcription factor TCF7L2 (TCF4) and alopecia areata. Immunol Invest. 2019;48(6):555–562. doi:10.1080/08820139.2019.1597109
  • Lee YJ, Park SH, Park HR, Lee Y, Kang H, Kim JE. Mesenchymal stem cells antagonize IFN-induced proinflammatory changes and growth inhibition effects via Wnt/beta-Catenin and JAK/STAT pathway in human outer root sheath cells and hair follicles. Int J Mol Sci. 2021;22(9). doi:10.3390/ijms22094581
  • Yue Z, Yang F, Zhang J, Li J, Chuong CM. Regulation and dysregulation of hair regeneration: aiming for clinical application. Cell Regen. 2022;11(1):22. doi:10.1186/s13619-022-00122-x
  • Coda AB, Sinha AA. Integration of genome-wide transcriptional and genetic profiles provides insights into disease development and clinical heterogeneity in alopecia areata. Genomics. 2011;98(6):431–439. doi:10.1016/j.ygeno.2011.08.009
  • Ann S, Ibo J, Megha M, et al. Treatment of in vitro generated Langerhans cells with JAK-STAT inhibitor reduces their inflammatory potential. Clin Exp Med. 2022. doi:10.1007/s10238-022-00899-w
  • Kim JE, Lee YJ, Park HR, Lee DG, Jeong KH, Kang H. The effect of JAK inhibitor on the survival, anagen re-entry, and hair follicle immune privilege restoration in human dermal papilla cells. Int J Mol Sci. 2020;21(14). doi:10.3390/ijms21145137
  • Aota K, Yamanoi T, Kani K, Ono S, Momota Y, Azuma M. Inhibition of JAK-STAT signaling by baricitinib reduces interferon-gamma-induced CXCL10 production in human salivary gland ductal cells. Inflammation. 2021;44(1):206–216. doi:10.1007/s10753-020-01322-w
  • Jia Y, Jing J, Bai Y, et al. Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-kappaB signaling pathways. PLoS One. 2011;6(10):e27006. doi:10.1371/journal.pone.0027006
  • Kaneko F, Suzuki M, Takiguchi Y, Itoh N, Minagawa T. Immunohistopathologic studies in the development of psoriatic lesion influenced by gamma-interferon and the producing cells. J Dermatol Sci. 1990;1(6):425–434. doi:10.1016/0923-1811(90)90012-3
  • McDonagh AJ, Snowden JA, Stierle C, Elliott K, Messenger AG. HLA and ICAM-1 expression in alopecia areata in vivo and in vitro: the role of cytokines. Br J Dermatol. 1993;129(3):250–256. doi:10.1111/j.1365-2133.1993.tb11842.x