109
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effect of COVID-19 and Face Masks on the Condition of Rosacea – A Retrospective Analysis of 87 Patients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2855-2862 | Received 05 Jul 2023, Accepted 03 Oct 2023, Published online: 13 Oct 2023

References

  • Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes Metab Syndr. 2021;15(3):869–875. doi:10.1016/j.dsx.2021.04.007
  • Wollina U, Karadağ AS, Rowland-Payne C, Chiriac A, Lotti T. Cutaneous signs in COVID-19 patients: a review. Dermatol Ther. 2020;33(5):e13549. doi:10.1111/dth.13549
  • Rudnicka L, Glowacka P, Goldust M, et al. Cyclosporine therapy during the COVID-19 pandemic. J Am Acad Dermatol. 2020;83(2):e151–e152. doi:10.1016/j.jaad.2020.04.153
  • Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish J Med Dci. 2020;50(Si–1):620–632. doi:10.3906/sag-2004-168
  • Nägele MP, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: current findings and therapeutic implications. Atherosclerosis. 2020;314:58–62. doi:10.1016/j.atherosclerosis.2020.10.014
  • Zhong J, Tang J, Ye C, Dong L. The immunology of COVID-19: is immune modulation an option for treatment? Lancet Rheumatol. 2020;2(7):e428–e436. doi:10.1016/S2665-9913(20)30120-X
  • Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913.e907. doi:10.1016/j.cell.2020.04.004
  • Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi:10.1002/path.1570
  • Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi:10.1016/S0140-6736(20)30937-5
  • Yamasaki K, Kanada K, Macleod DT, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131(3):688–697. doi:10.1038/jid.2010.351
  • Xie HF, Huang YX, He L, et al. An observational descriptive survey of rosacea in the Chinese population: clinical features based on the affected locations. PeerJ. 2017;5:e3527. doi:10.7717/peerj.3527
  • Woo YR, Lim JH, Cho DH, Park HJ. Rosacea: molecular mechanisms and management of a chronic cutaneous inflammatory condition. Int J Mol Sci. 2016;17(9):1562. doi:10.3390/ijms17091562
  • Jeon HW, Na EY, Yun SJ, Lee SC, Lee JB. Citron essential oils alleviate the mediators related to rosacea pathophysiology in epidermal keratinocytes. Ann Dermatol. 2018;30(6):653–661. doi:10.5021/ad.2018.30.6.653
  • Steinhoff M, Buddenkotte J, Aubert J, et al. Clinical, cellular, and molecular aspects in the pathophysiology of rosacea. J Invest Dermatol Sympos Proce. 2011;15(1):2–11. doi:10.1038/jidsymp.2011.7
  • Addor FA. Skin barrier in rosacea. An Bras Dermatol. 2016;91(1):59–63. doi:10.1590/abd1806-4841.20163541
  • Roihu T, Kariniemi AL. Demodex mites in acne rosacea. J Cutan Pathol. 1998;25(10):550–552. doi:10.1111/j.1600-0560.1998.tb01739.x
  • Casas C, Paul C, Lahfa M, et al. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol. 2012;21(12):906–910. doi:10.1111/exd.12030
  • Turgut Erdemir A, Gurel MS, Koku Aksu AE, Falay T, Inan Yuksel E, Sarikaya E. Demodex mites in acne rosacea: reflectance confocal microscopic study. Australas J Dermatol. 2017;58(2):e26–e30. doi:10.1111/ajd.12452
  • Gerber PA, Buhren BA, Steinhoff M, Homey B. Rosacea: the cytokine and chemokine network. J Invest Dermatol Sympos Proce. 2011;15(1):40–47. doi:10.1038/jidsymp.2011.9
  • Buhl T, Sulk M, Nowak P, et al. Molecular and morphological characterization of inflammatory infiltrate in rosacea reveals activation of Th1/Th17 pathways. J Invest Dermatol. 2015;135(9):2198–2208. doi:10.1038/jid.2015.141
  • Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Invest Dermatol Sympos Proce. 2011;15(1):12–15. doi:10.1038/jidsymp.2011.4
  • Zheng Y, Niyonsaba F, Ushio H, et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol. 2007;157(6):1124–1131. doi:10.1111/j.1365-2133.2007.08196.x
  • Muto Y, Wang Z, Vanderberghe M, Two A, Gallo RL, Di Nardo A. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J Invest Dermatol. 2014;134(11):2728–2736. doi:10.1038/jid.2014.222
  • Schwab VD, Sulk M, Seeliger S, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J Invest Dermatol Sympos Proce. 2011;15(1):53–62. doi:10.1038/jidsymp.2011.6
  • Badieyan ZS, Hoseini SS. Improvement of rosacea during acyclovir treatment: a case report. Am J Clin Dermatol. 2017;18(6):845–846. doi:10.1007/s40257-017-0315-8
  • Sezer E, Koseoglu RD, Filiz N. Wolf’s isotopic response: rosacea appearing at the site of healed herpes zoster. Australas J Dermatol. 2006;47(3):189–191. doi:10.1111/j.1440-0960.2006.00270.x
  • Vin-Christian K, Maurer TA, Berger TG. Acne rosacea as a cutaneous manifestation of HIV infection. J Am Acad Dermatol. 1994;30(1):139–140. doi:10.1016/S0190-9622(08)81905-6
  • Yamaoka T, Murota H, Tani M, Katayama I. Severe rosacea with prominent Demodex folliculorum in a patient with HIV. J Dermatol. 2014;41(2):195–196. doi:10.1111/1346-8138.12352
  • Imbalzano E, Casciaro M, Quartuccio S, et al. Association between urticaria and virus infections: a systematic review. Allergy Asthma Proce. 2016;37(1):18–22. doi:10.2500/aap.2016.37.3915
  • Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269–270. doi:10.1038/s41577-020-0308-3
  • Meixiong J, Anderson M, Limjunyawong N, et al. Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity. 2019;50(5):1163–1171.e1165. doi:10.1016/j.immuni.2019.03.013
  • Lafont E, Sokol H, Sarre-Annweiler ME, et al. Étiologies et orientation diagnostique devant un flush [Causes and differential diagnosis of flush]. La Revue de medecine interne. 2014;35(5):303–309. French. doi:10.1016/j.revmed.2013.08.015
  • Ray D, Williams G. Pathophysiological causes and clinical significance of flushing. Br J Hosp Med. 1993;50(10):594–598.
  • Yang TB, Kim BS. Pruritus in allergy and immunology. J Allergy Clin Immunol. 2019;144(2):353–360. doi:10.1016/j.jaci.2019.06.016
  • Damiani G, Gironi LC, Grada A, et al. COVID-19 related masks increase severity of both acne (maskne) and rosacea (mask rosacea): multi-center, real-life, telemedical, and observational prospective study. Dermatol Ther. 2021;34(2):e14848. doi:10.1111/dth.14848
  • Lan J, Song Z, Miao X, et al. Skin damage among health care workers managing coronavirus disease-2019. J Am Acad Dermatol. 2020;82(5):1215–1216. doi:10.1016/j.jaad.2020.03.014
  • Szepietowski JC, Matusiak Ł, Szepietowska M, Krajewski PK, Białynicki-Birula R. Face mask-induced itch: a self-questionnaire study of 2315 responders during the COVID-19 pandemic. Acta Derm Venereol. 2020;100(10):adv00152. doi:10.2340/00015555-3536
  • Zuo Y, Hua W, Luo Y, Li L. Skin reactions of N95 masks and medial masks among health-care personnel: a self-report questionnaire survey in China. Contact Dermatitis. 2020;83(2):145–147. doi:10.1111/cod.13555
  • Yaqoob S, Saleem A, Jarullah FA, Asif A, Essar MY, Emad S. Association of acne with face mask in healthcare workers amidst the COVID-19 outbreak in Karachi, Pakistan. Clin Cosmet Investig Dermatol. 2021;14:1427–1433. doi:10.2147/CCID.S333221
  • Hua W, Zuo Y, Wan R, et al. Short-term skin reactions following use of N95 respirators and medical masks. Contact Dermatitis. 2020;83(2):115–121. doi:10.1111/cod.13601
  • Jusuf NK, Putra IB, Sari L. Differences of microbiomes found in non-inflammatory and inflammatory lesions of acne vulgaris. Clin Cosmet Investig Dermatol. 2020;13:773–780. doi:10.2147/CCID.S272334
  • Moran EM, Foley R, Powell FC. Demodex and rosacea revisited. Clin Dermatol. 2017;35(2):195–200. doi:10.1016/j.clindermatol.2016.10.014
  • Trave I, Micalizzi C, Cozzani E, Gasparini G, Parodi A. Papulopustular rosacea treated with ivermectin 1% cream: remission of the demodex mite infestation over time and evaluation of clinical relapses. Dermat Pract Concept. 2022;12(4):e2022201. doi:10.5826/dpc.1204a201
  • van Zuuren EJ, Arents BWM, van der Linden MMD, Vermeulen S, Fedorowicz Z, Tan J. Rosacea: new concepts in classification and treatment. Am J Clin Dermatol. 2021;22(4):457–465. doi:10.1007/s40257-021-00595-7