148
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Integration of Single-Cell Transcriptomics Data Reveal Differences in Cell Composition and Communication in Acne

, , & ORCID Icon
Pages 3413-3426 | Received 18 Sep 2023, Accepted 21 Nov 2023, Published online: 30 Nov 2023

References

  • Layton AM, Ravenscroft J. Adolescent acne vulgaris: current and emerging treatments. Lancet Child Adolesc Health. 2023;7:136–144. doi:10.1016/S2352-4642(22)00314-5
  • Bikash C, Sarkar R. Topical management of acne scars: the uncharted terrain. J Cosmet Dermatol. 2023;22:1191–1196. doi:10.1111/jocd.15584
  • Vempati A, Zhou C, Tam C, et al. Subcision for atrophic acne scarring: a comprehensive review of surgical instruments and combinatorial treatments. Clin Cosmet Investig Dermatol. 2023;16:125–134. doi:10.2147/CCID.S397888
  • Mohsin N, Hernandez LE, Martin MR, Does AV, Nouri K. Acne treatment review and future perspectives. Dermatol Ther. 2022;35:e15719. doi:10.1111/dth.15719
  • Kutlu O, Karadag AS, Wollina U. Adult acne versus adolescent acne: a narrative review with a focus on epidemiology to treatment. An Bras Dermatol. 2023;98:75–83. doi:10.1016/j.abd.2022.01.006
  • Gebauer K. Acne in adolescents. Aust Fam Physician. 2017;46:892–895.
  • Titus S, Hodge J. Diagnosis and treatment of acne. Am Fam Physician. 2012;86:734–740.
  • Heng AHS, Chew FT. Systematic review of the epidemiology of acne vulgaris. Sci Rep. 2020;10(5754): 10.1038/s41598-020-62715-3.
  • Dursun R, Daye M, Durmaz K. Acne and rosacea: what’s new for treatment? Dermatol Ther. 2019;32:e13020. doi:10.1111/dth.13020
  • Tan JK, Bhate K. A global perspective on the epidemiology of acne. Br J Dermatol. 2015;172:3–12. doi:10.1111/bjd.13462
  • Gieler U, Gieler T, Kupfer JP. Acne and quality of life - impact and management. J Eur Acad Dermatol Venereol. 2015;29(4):12–14. doi:10.1111/jdv.13191
  • Gonzalez-Mondragon EA, Ganoza-Granados LDC, Toledo-Bahena ME, et al. Acne and diet: a review of pathogenic mechanisms. Bol Med Hosp Infant Mex. 2022;79:83–90. doi:10.24875/BMHIM.21000088
  • Kanwar IL, Haider T, Kumari A, Dubey S, Jain P, Soni V. Models for acne: a comprehensive study. Drug Discov Ther. 2018;12:329–340. doi:10.5582/ddt.2018.01079
  • Dréno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol. 2017;31(5):8–12. doi:10.1111/jdv.14374
  • Rao A, Douglas SC, Hall JM. Endocrine disrupting chemicals, hormone receptors, and acne vulgaris: a connecting hypothesis. Cells. 2021;10:1439. doi:10.3390/cells10061439
  • Harvey A, Huynh TT. Inflammation and acne: putting the pieces together. J Drugs Dermatol. 2014;13:459–463.
  • Hu T, Wei Z, Ju Q, Chen W. Sex hormones and acne: state of the art. J Dtsch Dermatol Ges. 2021;19:509–515. doi:10.1111/ddg.14426
  • Do TH, Ma F, Andrade PR, et al. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci Immunol. 2022;7:eabo2787. doi:10.1126/sciimmunol.abo2787
  • Sole-Boldo L, Raddatz G, Schutz S, et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. 2020;3(188). doi:10.1038/s42003-020-0922-4
  • Direder M, Weiss T, Copic D, et al. Schwann cells contribute to keloid formation. Matrix Biol. 2022;108:55–76. doi:10.1016/j.matbio.2022.03.001
  • Vorstandlechner V, Laggner M, Copic D, et al. The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation. Nat Commun. 2021;12:6242. doi:10.1038/s41467-021-26495-2
  • Singh K, Rustagi Y, Abouhashem AS, et al. Genome-wide DNA hypermethylation opposes healing in patients with chronic wounds by impairing epithelial-mesenchymal transition. J Clin Invest. 2022;132. doi:10.1172/JCI157279
  • Tabib T, Morse C, Wang T, Chen W, Lafyatis R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J Invest Dermatol. 2018;138:802–810. doi:10.1016/j.jid.2017.09.045
  • Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–1296. doi:10.1038/s41592-019-0619-0
  • Wu T, Hu E, Xu S, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141. doi:10.1016/j.xinn.2021.100141
  • Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12(1088):10.1038/s41467-021-21246-9.
  • Kircik LH. Androgens and acne: perspectives on clascoterone, the first topical androgen receptor antagonist. Expert Opin Pharmacother. 2021;22:1801–1806. doi:10.1080/14656566.2021.1918100
  • Carmina E, Dreno B, Lucky WA, et al. Female adult acne and androgen excess: a report from the multidisciplinary androgen excess and PCOS committee. J Endocr Soc. 2022;6:bvac003. doi:10.1210/jendso/bvac003
  • Kuiri-Hänninen T, Haanpää M, Turpeinen U, Hämäläinen E, Dunkel L, Sankilampi U. Transient postnatal secretion of androgen hormones is associated with acne and sebaceous gland hypertrophy in early infancy. J Clin Endocrinol Metab. 2013;98:199–206. doi:10.1210/jc.2012-2680
  • Traish AM, Kang HP, Saad F, Guay AT. Dehydroepiandrosterone (DHEA)--a precursor steroid or an active hormone in human physiology. J Sex Med. 2011;8:2960–2982; quiz 2983. doi:10.1111/j.1743-6109.2011.02523.x
  • Tan JKL, Stein Gold LF, Alexis AF, Harper JC. Current concepts in acne pathogenesis: pathways to inflammation. Semin Cutan Med Surg. 2018;37:S60–S62. doi:10.12788/j.sder.2018.024
  • Tanghetti EA. The role of inflammation in the pathology of acne. J Clin Aesthet Dermatol. 2013;6:27–35.
  • Dreno B, Gollnick HP, Kang S, et al.; Global Alliance to Improve Outcomes in Acne. Understanding innate immunity and inflammation in acne: implications for management. J Eur Acad Dermatol Venereol. 2015;29(4):3–11. doi:10.1111/jdv.13190
  • Younis S, Shamim S, Nisar K, et al. Association of TNF-alpha polymorphisms (−857, −863 and −1031), TNF-alpha serum level and lipid profile with acne vulgaris. Saudi J Biol Sci. 2021;28:6615–6620. doi:10.1016/j.sjbs.2021.07.042
  • Taylor M, Porter R, Gonzalez M. Intense pulsed light may improve inflammatory acne through TNF-α down-regulation. J Cosmet Laser Ther. 2014;16:96–103. doi:10.3109/14764172.2013.864198
  • Chen X, Min S, Chen C, Lin X, Wang D, Jiang G. Influence of RETN, IL-1, and IL-6 gene polymorphisms on the risk of acne vulgaris in the Chinese population. J Cosmet Dermatol. 2022;21:4965–4973. doi:10.1111/jocd.14911
  • Thiboutot DM. Inflammasome activation by Propionibacterium acnes: the story of IL-1 in acne continues to unfold. J Invest Dermatol. 2014;134:595–597. doi:10.1038/jid.2013.528
  • Hollenberg MD, Mihara K, Polley D, et al. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br J Pharmacol. 2014;171:1180–1194. doi:10.1111/bph.12544
  • Ramachandran R, Hollenberg MD. Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol. 2008;153 Suppl 1:S263–282. doi:10.1038/sj.bjp.0707507
  • Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase-Activated Receptors (PARs). Febs j. 2021;288:2697–2726. doi:10.1111/febs.15829
  • Zhang H, Yang H, He S. TNF increases expression of IL-4 and PARs in mast cells. Cell Physiol Biochem. 2010;26:327–336. doi:10.1159/000320556