44
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Angiotensin (1-7) Inhibits Transforming Growth Factor-Β1–Induced Epithelial-Mesenchymal Transition of Human Keratinocyte Hacat Cells in vitro

, , , , , & show all
Pages 1049-1058 | Received 22 Sep 2023, Accepted 24 Mar 2024, Published online: 07 May 2024

References

  • Marneros AG, Krieg T. Keloids – clinical diagnosis, pathogenesis, and treatment options. J Dtsch Dermatol Ges. 2004;2(11):905–913. doi:10.1046/j.1439-0353.2004.04077.x
  • Atiyeh BS, Costagliola M, Hayek SN. Keloid or hypertrophic scar: the controversy: review of the literature. Ann Plast Surg. 2005;54(6):676–680. doi:10.1097/01.sap.0000164538.72375.93
  • Ding J, Tredget EE. The Role of Chemokines in Fibrotic Wound Healing. Adv Wound Care. 2015;4(11):673–686. doi:10.1089/wound.2014.0550
  • Satish L, Evdokiou A, Geletu E, Hahn JM, Supp DM. Pirfenidone inhibits epithelial–mesenchymal transition in keloid keratinocytes. Burns Trauma. 2020;8. doi:10.1093/burnst/tkz007
  • Bock (Seifert) O, Yu H, Zitron S, Bayat A, Ferguson MW, Mrowietz U. Studies of Transforming Growth Factors Beta 1–3 and their Receptors I and II in Fibroblast of Keloids and Hypertrophic Scars. Acta Dermato-Venereologica. 2005;85(3):216–220. doi:10.1080/00015550410025453
  • Tamaoki M, Imanaka-Yoshida K, Yokoyama K, et al. Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol. 2005;167(1):71–80. doi:10.1016/S0002-9440(10)62954-9
  • Nangole FW, Agak GW. Keloid pathophysiology: fibroblast or inflammatory disorders? JPRAS Open. 2019;22:44–54. doi:10.1016/j.jpra.2019.09.004
  • Kuwahara H, Tosa M, Egawa S, Murakami M, Mohammad G, Ogawa R. Examination of Epithelial Mesenchymal Transition in Keloid Tissues and Possibility of Keloid Therapy Target. Plast Reconstr Surg Glob Open. 2016;4(11):e1138. doi:10.1097/GOX.0000000000001138
  • Hahn JM, McFarland KL, Combs KA, Supp DM. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. Burns Trauma. 2016;4:30. doi:10.1186/s41038-016-0055-7
  • Yang C-E, Moon SJ, Kim SJ, et al. Epithelial-mesenchymal transition in keloid tissue. Arch Plast Surg. 2018;45(06):600–601. doi:10.5999/aps.2017.01214
  • Kong D, Li Y, Wang Z, Sarkar FH. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: are They Cousins or Twins? Cancers. 2011;3(1):716–729. doi:10.3390/cancers30100716
  • Wendt MK, Schiemann WP. Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasis. Breast Cancer Res. 2009;11(5):R68. doi:10.1186/bcr2360
  • Ma X, Chen J, Xu B, et al. Keloid-derived keratinocytes acquire a fibroblast-like appearance and an enhanced invasive capacity in a hypoxic microenvironment in vitro. Int J Mol Med. 2015;35(5):1246–1256. doi:10.3892/ijmm.2015.2135
  • Hahn JM, McFarland KL, Combs KA, Supp DM. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. Burns Trauma. 2016;4:s41038-016-0055–7.
  • Zhang M, Liu S, Guan E, et al. Hyperbaric oxygen therapy can ameliorate the EMT phenomenon in keloid tissue. Medicine. 2018;97(29):e11529. doi:10.1097/MD.0000000000011529
  • Do DV, Ong CT, Khoo YT, et al. Interleukin-18 system plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. Br J Dermatol. 2012;166(6):1275–1288. doi:10.1111/j.1365-2133.2011.10721.x
  • Jiang X, Zhang Z, Song C, et al. Glaucocalyxin A reverses EMT and TGF-β1-induced EMT by inhibiting TGF-β1/Smad2/3 signaling pathway in osteosarcoma. Chem Biol Interact. 2019;307:158–166. doi:10.1016/j.cbi.2019.05.005
  • Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–172. doi:10.1038/cr.2009.5
  • Rygiel KA, Robertson H, Marshall HL, et al. Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab Invest. 2008;88(2):112–123. doi:10.1038/labinvest.3700704
  • Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs. Semin Cancer Biol. 2022;86:136–145. doi:10.1016/j.semcancer.2022.09.004
  • U T, S A, N U, C P, Y N, P V. Molecular signalings in keloid disease and current therapeutic approaches from natural based compounds. Pharm Biol. 2015;53.
  • Hong Y-K, Chang Y-H, Lin Y-C, Chen B, Guevara BEK, Hsu C-K. Inflammation in Wound Healing and Pathological Scarring. Adv Wound Care. 2023;12(5):288–300. doi:10.1089/wound.2021.0161
  • Yan L, Cao R, Wang L, et al. Epithelial–mesenchymal transition in keloid tissues and TGF-β1 –induced hair follicle outer root sheath keratinocytes. Wound Repair Regener. 2015;23(4):601–610. doi:10.1111/wrr.12320
  • Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nature Med. 2015;21(9):989–997. doi:10.1038/nm.3901
  • A M, A G-P, M N, P A, C E. The expression of the renin-angiotensin-aldosterone system in the skin and its effects on skin physiology and pathophysiology. J Physiol Pharmacol. 2019;70.
  • Ghatage T, Goyal SG, Dhar A, Bhat A. Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res. 2021;44(7):740–755. doi:10.1038/s41440-021-00643-z
  • Sumners C, Peluso AA, Haugaard AH, Bertelsen JB, Steckelings UM. Anti-fibrotic mechanisms of angiotensin AT 2 -receptor stimulation. Acta Physiol (Oxf). 2019;227(1):e13280. doi:10.1111/apha.13280
  • Simões e Silva A, Silveira K, Ferreira A, Teixeira M. ACE2, angiotensin-(1-7) and M as receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–492. doi:10.1111/bph.12159
  • Bernasconi R, Thriene K, Romero‐Fernández E, et al. Pro‐inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Ang‐(1‐7). EMBO Mol Med. 2021;13(10). doi:10.15252/emmm.202114392
  • Okamura K. Angiotensin(1–7) attenuated Angiotensin II-induced hepatocyte EMT by inhibiting NOX-derived H2O2-activated NLRP3 inflammasome/IL-1β/Smad circuit. Free Radic Biol Med. 2016;97:531–543. doi:10.1016/j.freeradbiomed.2016.07.014.
  • Zhou JP, Tang W, Feng Y, et al. Angiotensin-(1–7) decreases the expression of collagen I via TGF-β1/Smad2/3 and subsequently inhibits fibroblast–myofibroblast transition. Clin Sci. 2016;130(21):1983–1991. doi:10.1042/CS20160193
  • Marty P, Chatelain B, Lihoreau T, et al. Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction. Biomed. Pharmacother. 2021;135:111182. doi:10.1016/j.biopha.2020.111182
  • Miyake Y, Nagaoka Y, Okamura K, Takeishi Y, Tamaoki S, Hatta M. SNAI2 is induced by transforming growth factor‑β1, but is not essential for epithelial‑mesenchymal transition in human keratinocyte HaCaT cells. Exp Ther Med. 2021;22(4):1–10. doi:10.3892/etm.2021.10558
  • Wang T, Zhang L, Shi C, et al. TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells. Int J Biochem Cell Biol. 2012;44(2):366–376. doi:10.1016/j.biocel.2011.11.012
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochimica et Biophysica Acta. 2008;1778(3):631–645. doi:10.1016/j.bbamem.2007.10.018
  • Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genom. 2014;46(7):223–244. doi:10.1152/physiolgenomics.00158.2013
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428. doi:10.1172/JCI39104
  • Liu F, Gu L-N, Shan B-E, Geng C-Z, Sang M-X. Biomarkers for EMT and MET in breast cancer: an update. Oncol Lett. 2016;12(6):4869–4876. doi:10.3892/ol.2016.5369
  • Reinke LM, Xu Y, Cheng C. Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J Biol Chem. 2012;287(43):36435–36442. doi:10.1074/jbc.M112.397125
  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin–cadherin interactions. J Cell Biol. 2003;163(4):847–857. doi:10.1083/jcb.200308162
  • Vincent T, Neve EPA, Johnson JR, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11(8):943–950. doi:10.1038/ncb1905
  • Guo H, Jian Z, Liu H, et al. TGF-β1-induced EMT activation via both Smad-dependent and MAPK signaling pathways in Cu-induced pulmonary fibrosis. Toxicol Appl Pharmacol. 2021;418:115500. doi:10.1016/j.taap.2021.115500
  • Chen Y, Fan J, Cao L, et al. Unique mechanistic insights into the beneficial effects of angiotensin-(1-7) on the prevention of cardiac fibrosis: a metabolomic analysis of primary cardiac fibroblasts. Exp Cell Res. 2019;378(2):158–170. doi:10.1016/j.yexcr.2019.03.006
  • Liu M-L, Xing S-J, Liang X-Q, et al. Reversal of Hypoxic Pulmonary Hypertension by Hypoxia-Inducible Overexpression of Angiotensin-(1-7) in Pulmonary Endothelial Cells. Mol Ther Methods Clin Dev. 2020;17:975–985. doi:10.1016/j.omtm.2020.04.008
  • Choi HS, Kim IJ, Kim CS, et al. Angiotensin-[1–7] attenuates kidney injury in experimental Alport syndrome. Sci Rep. 2020;10(1):4225. doi:10.1038/s41598-020-61250-5
  • Touyz RM, Montezano AC. Angiotensin-(1–7) and Vascular Function. Hypertension. 2018;71(1):68–69. doi:10.1161/HYPERTENSIONAHA.117.10406