96
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Protective Effect of Panax notoginseng Extract Fermented by Four Different Saccharomyces cerevisiae Strains on H2O2 Induced Oxidative Stress in Skin Fibroblasts

, , , , , , , ORCID Icon & show all
Pages 621-635 | Received 08 Oct 2023, Accepted 16 Jan 2024, Published online: 13 Mar 2024

References

  • Wang T, Guo R, Zhou G, et al. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol. 2016;188:234–258. doi:10.1016/j.jep.2016.05.005
  • Zhao H, Han Z, Li G, et al. Therapeutic Potential and Cellular Mechanisms of Panax Notoginseng on Prevention of Aging and Cell Senescence-Associated Diseases. Aging Dis. 2017;8(6):721–739. doi:10.14336/AD.2017.0724
  • Duan L, Xiong X, Hu J, et al. Panax notoginseng Saponins for Treating Coronary Artery Disease: a Functional and Mechanistic Overview. Front Pharmacol. 2017;8:702. doi:10.3389/fphar.2017.00702
  • Sun Z, Wu H, Wu Y, et al. Comparative Analysis of Compatibility Influence on Invigorating Blood Circulation for Combined Use of Panax Notoginseng Saponins and Aspirin Using Metabolomics Approach. Front Pharmacol. 2021;12:544002. doi:10.3389/fphar.2021.544002
  • Liu YH, Qin HY, Zhong YY, et al. Neutral polysaccharide from Panax notoginseng enhanced cyclophosphamide antitumor efficacy in hepatoma H22-bearing mice. BMC Cancer. 2021;21(1):37. doi:10.1186/s12885-020-07742-z
  • Zhou N, Tang Y, Keep RF, et al. Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine. 2014;21(10):1189–1195. doi:10.1016/j.phymed.2014.05.004
  • Wang Y, Shang Y, Tang F, et al. Self-Double-Emulsifying Drug Delivery System Enteric-Coated Capsules: a Novel Approach to Improve Oral Bioavailability and Anti-inflammatory Activity of Panax notoginseng Saponins. AAPS Pharm Sci Tech. 2023;24(4):90. doi:10.1208/s12249-023-02549-0
  • Zhang C, Li C, Chen S, et al. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Sci Rep. 2017;7(1):41082. doi:10.1038/srep41082
  • Uzayisenga R, Ayeka PA, Wang Y. Anti-diabetic potential of Panax notoginseng saponins (PNS): a review. Phytother Res. 2014;28(4):510–516. doi:10.1002/ptr.5026
  • Li Z, Gu H, Song H, et al. Radix Angelica sinensis soup production by decocting process using high pressure. Int J Food Prop. 2017;20(sup1):S620–S631. doi:10.1080/10942912.2017.1306552
  • Hur SJ, Lee SY, Kim YC, et al. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014;160:346–356. doi:10.1016/j.foodchem.2014.03.112
  • You S, Shi X, Yu D, et al. Fermentation of Panax notoginseng root extract polysaccharides attenuates oxidative stress and promotes type I procollagen synthesis in human dermal fibroblast cells. BMC Complement Med Ther. 2021;21(1):34. doi:10.1186/s12906-020-03197-8
  • Lee S, Reddy CK, Ryu JJ, et al. Solid-State Fermentation With Aspergillus cristatus Enhances the Protopanaxadiol- and Protopanaxatriol-Associated Skin Anti-aging Activity of Panax notoginseng. Front Microbiol. 2021;12:602135. doi:10.3389/fmicb.2021.602135
  • Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126(12):2565–2575. doi:10.1038/sj.jid.5700340
  • Gu Y, Han J, Jiang C, et al. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020;59:101036. doi:10.1016/j.arr.2020.101036
  • Mittler R. ROS Are Good. Trends Plant Sci. 2017;22(1):11–19. doi:10.1016/j.tplants.2016.08.002
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. doi:10.1016/j.biocel.2006.07.001
  • Mo Q, Fu H, Zhao D, et al. Protective Effects of Mogroside V on Oxidative Stress Induced by H2O2 in Skin Fibroblasts. Drug Des Devel Ther. 2021;15:4901–4909. doi:10.2147/DDDT.S337524
  • Gille JJ, Joenje H. Cell culture models for oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutat Res. 1992;275(3–6):546.
  • Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2(4):875–877. doi:10.1038/nprot.2007.102
  • Le AV, Parks SE, Nguyen MH, et al. Improving the Vanillin-Sulphuric Acid Method for Quantifying Total Saponins. Technologies. 2018;6(3):84. doi:10.3390/technologies6030084
  • Blois M. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958;181(4617):1190–1200. doi:10.1038/1811199a0
  • Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–1237. doi:10.1016/S0891-5849(98)00315-3
  • Zhuang H, Tang N, Yuan Y. Purification and identification of antioxidant peptides from corn gluten meal. J Funct Foods. 2013;5(4):1810–1821. doi:10.1016/j.jff.2013.08.013
  • Pape WJ, Pfannenbecker U, Argembeaux H, et al. COLIPA validation project on in vitro eye irritation tests for cosmetic ingredients and finished products (phase I): the red blood cell test for the estimation of acute eye irritation potentials. Present status. Toxicol In Vitro. 1999;13(2):343–354. doi:10.1016/S0887-2333(98)00085-X
  • Ma X, Wang H, Song Y, et al. Skin irritation potential of cosmetic preservatives: an exposure-relevant study. J Cosmet Dermatol. 2021;20(1):195–203. doi:10.1111/jocd.13502
  • Vinardell MP, Mitjans M. Alternative methods for eye and skin irritation tests: an overview. J Pharm Sci. 2008;97(1):46–59. doi:10.1002/jps.21088
  • Qu W, Breksa Iii AP, Pan Z, et al. Storage stability of sterilized liquid extracts from pomegranate peel. J Food Sci. 2012;77(7):C765–C772. doi:10.1111/j.1750-3841.2012.02779.x
  • Si Y, Grazon C, Clavier G, et al. Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications. Biosens Bioelectron. 2016;75:320–327. doi:10.1016/j.bios.2015.08.028
  • Li X, Liu J, Zuo TT, et al. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep. 2022;39(4):875–909. doi:10.1039/d1np00071c
  • Leonard W, Zhang P, Ying D, et al. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol Adv. 2021;49:107763. doi:10.1016/j.biotechadv.2021.107763
  • Parapouli M, Vasileiadis A, Afendra AS, et al. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020;6(1):1–31. doi:10.3934/microbiol.2020001
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. doi:10.1093/geronj/11.3.298
  • Emerit I. Free radicals and aging of the skin. EXS. 1992;62:328–341. doi:10.1007/978-3-0348-7460-1_33
  • Zhai L, Xu X, Liu J, et al. A Novel Biochemical Study of Anti-Dermal Fibroblast Replicative Senescence Potential of Panax Notoginseng Oligosaccharides. Front Pharmacol. 2021;12:690538. doi:10.3389/fphar.2021.690538
  • Zhang Y, Cai W, Han G, et al. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K-AKT-mTOR pathway in osteoarthritic chondrocytes. Int J Mol Med. 2020;45(4):1225–1236. doi:10.3892/ijmm.2020.4491
  • Feng S, Cheng H, Xu Z, et al. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans. Int J Biol Macromol. 2015;81:188–194. doi:10.1016/j.ijbiomac.2015.07.057