102
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genomics-Microbiome Based Assessment of Bidirectional Causality Between Gut Microbiota and Psoriasis

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 435-445 | Received 19 Nov 2023, Accepted 08 Jan 2024, Published online: 12 Feb 2024

References

  • Langley RGB. Psoriasis: epidemiology, clinical features, and quality of life. Ann Rheumatic Dis. 2005;64(suppl_2):ii18–ii23. doi:10.1136/ard.2004.033217
  • Boehncke W-H, Schön MP. Psoriasis. Lancet. 2015;386(9997):983–994. doi:10.1016/S0140-6736(14)61909-7
  • Kamiya K, Kishimoto M, Sugai J, et al. Risk factors for the development of psoriasis. Int J Mol Sci. 2019;20(18):4347. doi:10.3390/ijms20184347
  • Jensen P, Skov L. Psoriasis and obesity. Dermatology. 2016;232(6):633–639. doi:10.1159/000455840
  • Langan EA, Künstner A. The gastrointestinal microbiome and psoriasis: more food for thought. Br J Dermatol. 2022;187(2):2. doi:10.1111/bjd.21618
  • Visser MJE, Kell DB, Pretorius E. Bacterial dysbiosis and translocation in psoriasis vulgaris. Front Cell Infect Microbiol. 2019;2019:9.
  • Atabati H, Esmaeili S, Saburi E, et al. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: evidence from experimental and clinical studies. J Cell Physiol. 2020;235(12):8925–8937. doi:10.1002/jcp.29737
  • Gagnon E, Mitchell PL, Manikpurage HD, et al. Impact of the gut microbiota and associated metabolites on cardiometabolic traits, chronic diseases and human longevity: a Mendelian randomization study. J Transl Med. 2023;21:1.
  • Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–605. doi:10.1038/s41588-019-0350-x
  • Liu B, Ye D, Yang H, et al. Two-sample Mendelian randomization analysis investigates causal associations between gut microbial genera and inflammatory bowel disease, and specificity causal associations in ulcerative colitis or crohn’s disease. Front Immunol. 2022;2022:13.
  • Sekula P, Del Greco M MFDG, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27(11):3253–3265. doi:10.1681/ASN.2016010098
  • Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–1739. doi:10.1093/ije/dyx034
  • Carter P, Yuan S, Kar S, et al. Coffee consumption and cancer risk: a Mendelian randomisation study. Clin Nutr. 2022;41(10):2113–2123. doi:10.1016/j.clnu.2022.08.019
  • Xu J, Zhang X, Tong W, et al. Phenome-wide Mendelian randomization study evaluating the association of circulating vitamin D with complex diseases. Frontiers in Nutrition. 2023;10:1.
  • Kuppa A, Tripathi H, Al-Darraji A, et al. C-reactive protein levels and risk of cardiovascular diseases: a two-sample bidirectional Mendelian randomization study. Int J Mol Sci. 2023;24(11):9129. doi:10.3390/ijms24119129
  • Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021:n2233. doi:10.1136/bmj.n2233
  • Yeung SLA, Gill D. Standardizing the reporting of Mendelian randomization studies. BMC Med. 2023;21(1):1. doi:10.1186/s12916-023-02894-8
  • Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–165. doi:10.1038/s41588-020-00763-1
  • Shang W, Zhang S, Qian H, et al. Association of gut microbiota with COVID‐19 susceptibility and severity: a two‐sample Mendelian randomization study. J med virol. 2023;95:4. doi:10.1002/jmv.28734
  • Liu K, Cai Y, Song K, et al. Clarifying the effect of gut microbiota on allergic conjunctivitis risk is instrumental for predictive, preventive, and personalized medicine: a Mendelian randomization analysis. EPMA J. 2023;14(2):235–248. doi:10.1007/s13167-023-00321-9
  • Song J, Wu Y, Yin X, et al. The causal links between gut microbiota and COVID‐19: a Mendelian randomization study. J med virol. 2023;95(5):5. doi:10.1002/jmv.28784
  • Kurki MI, Karjalainen J, Palta P, et al. FinnGen: unique genetic insights from combining isolated population and national health register data. MedRxiv. 2022;2022:1.
  • Luo M, Cai J, Luo S, et al. Causal effects of gut microbiota on the risk of chronic kidney disease: a Mendelian randomization study. Front Cell Infect Microbiol. 2023;13:1.
  • Li C, Liu C, Li N. Causal associations between gut microbiota and adverse pregnancy outcomes: a two-sample Mendelian randomization study. Front Microbiol. 2022;13:1.
  • Zhuang Z, Yang R, Wang W, et al. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J Neuroinflammation. 2020;17(1). doi:10.1186/s12974-020-01961-8
  • Long Y, Tang L, Zhou Y, et al. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med. 2023;21(1). doi:10.1186/s12916-023-02761-6
  • Luo S, Li W, Li Q, et al. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol. 2023;13:1.
  • Xiang K, Wang P, Xu Z, et al. Causal effects of gut microbiome on systemic lupus erythematosus: a two-sample Mendelian randomization study. Front Immunol. 2021;12:1.
  • Zhang L, Wang Y, Qiu L, et al. Psoriasis and cardiovascular disease risk in European and East Asian populations: evidence from meta-analysis and Mendelian randomization analysis. BMC Med. 2022;20(1). doi:10.1186/s12916-022-02617-5
  • Stec A, Sikora M, Maciejewska M, et al. Bacterial metabolites: a link between gut microbiota and dermatological diseases. Int J Mol Sci. 2023;24(4):3494. doi:10.3390/ijms24043494
  • Buhaș MC, Gavrilaș L, Candrea R, et al. Gut microbiota in psoriasis. Nutrients. 2022;14(14):2970. doi:10.3390/nu14142970
  • Wang X, Zhai W, Ma J, et al. Substantial alterations of the intestinal microbiota in psoriasis patients of China. Exp Dermatol. 2021;30(12):1840–1841. doi:10.1111/exd.14295
  • Hidalgo‐Cantabrana C, Gómez J, Delgado S, et al. Gut microbiota dysbiosis in a cohort of patients with psoriasis. Br J Dermatol. 2019;181(6):1287–1295. doi:10.1111/bjd.17931
  • Scher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2014;67(1):128–139. doi:10.1002/art.38892
  • Hou K, Wu Z-X, Chen X-Y, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):1.
  • Huang L, Gao R, Yu N, et al. Dysbiosis of gut microbiota was closely associated with psoriasis. Sci China Life Sci. 2019;62(6):807–815. doi:10.1007/s11427-018-9376-6
  • Chen Y, Ho HJ, Tseng C, et al. Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Exp Dermatol. 2018;27(12):1336–1343. doi:10.1111/exd.13786
  • Shapiro J, Cohen NA, Shalev V, et al. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol. 2019;46(7):595–603. doi:10.1111/1346-8138.14933
  • Tan L, Zhao S, Zhu W, et al. The Akkermansia muciniphila is a gut microbiota signature in psoriasis. Exp Dermatol. 2018;27(2):144–149. doi:10.1111/exd.13463
  • Myers B, Brownstone N, Reddy V, et al. The gut microbiome in psoriasis and psoriatic arthritis. Best Pract Res. 2019;33(6):101494. doi:10.1016/j.berh.2020.101494
  • Bisanz JE, Upadhyay V, Turnbaugh JA, et al. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe. 2019;26(2):265–272.e4. doi:10.1016/j.chom.2019.06.013
  • Jo J-K, Seo S-H, Park S-E, et al. Gut microbiome and metabolome profiles associated with high-fat diet in mice. Metabolites. 2021;11(8):482. doi:10.3390/metabo11080482
  • Sun M, Wu W, Liu Z, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52(1):1–8. doi:10.1007/s00535-016-1242-9
  • Fang D, Shi D, Lv L, et al. Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-09395-8
  • Mukherjee A, Lordan C, Ross RP, et al. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes. 2020;12(1):1802866. doi:10.1080/19490976.2020.1802866
  • Zhou J, Li M, Chen Q, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat Commun. 2022;13(1):1.
  • Li S, Zhou L, Zhang Q, et al. Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice. Food Funct. 2022;13(22):11715–11732. doi:10.1039/D2FO01973F
  • Ma E, Maskarinec G, Lim U, et al. Long-term association between diet quality and characteristics of the gut microbiome in the multiethnic cohort study. Br J Nutr. 2022;128(1):93–102. doi:10.1017/S0007114521002968
  • Bui TPN, A SS, Lagkouvardos I, et al. Comparative genomics and physiology of the butyrate‐producing bacterium intestinimonas butyriciproducens. Environ Microbiol Rep. 2016;8(6):1024–1037. doi:10.1111/1758-2229.12483
  • Thomann AK, Wüstenberg T, Wirbel J, et al. Depression and fatigue in active IBD from a microbiome perspective—a Bayesian approach to faecal metagenomics. BMC Med. 2022;20(1). doi:10.1186/s12916-022-02550-7
  • Yue S, Zhao D, Peng C, et al. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food Function. 2019;10(11):7063–7080. doi:10.1039/C9FO01334B