139
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of Shared Biomarkers and Immune Infiltration Signatures between Vitiligo and Hashimoto’s Thyroiditis

ORCID Icon, , , , , & ORCID Icon show all
Pages 311-327 | Received 21 Nov 2023, Accepted 23 Jan 2024, Published online: 01 Feb 2024

References

  • Ezzedine K, Lim HW, Suzuki T, et al. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigm Cell Mel Res. 2012;25(3):E1–E13. doi:10.1111/j.1755-148X.2012.00997.x
  • Jin Y, Birlea SA, Fain PR, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44(6):676–680. doi:10.1038/ng.2272
  • Steitz J, Wenzel J, Gaffal E, Tuting T. Initiation and regulation of CD8+T cells recognizing melanocytic antigens in the epidermis: implications for the pathophysiology of vitiligo. Eur J Cell Biol. 2004;83(11–12):797–803. doi:10.1078/0171-9335-00423
  • Kakourou T, Kanaka-Gantenbein C, Papadopoulou A, Kaloumenou E, Chrousos GP. Increased prevalence of chronic autoimmune (Hashimoto’s) thyroiditis in children and adolescents with vitiligo. J Am Acad Dermatol. 2005;53(2):220–223. doi:10.1016/j.jaad.2005.03.032
  • Gey A, Diallo A, Seneschal J, et al. Autoimmune thyroid disease in vitiligo: multivariate analysis indicates intricate pathomechanisms. Br J Dermatol. 2013;168(4):756–761. doi:10.1111/bjd.12166
  • Gill L, Zarbo A, Isedeh P, Jacobsen G, Lim HW, Hamzavi I. Comorbid autoimmune diseases in patients with vitiligo: a cross-sectional study. J Am Acad Dermatol. 2016;74(2):295–302. doi:10.1016/j.jaad.2015.08.063
  • Kawashima A, Yamazaki K, Hara T, et al. Demonstration of innate immune responses in the thyroid gland: potential to sense danger and a possible trigger for autoimmune reactions. Thyroid. 2013;23(4):477–487. doi:10.1089/thy.2011.0480
  • Klatka M, Polak A, Mertowska P, et al. The Role of Toll-like Receptor 2 (TLR2) in the development and progression of Hashimoto’s Disease (HD): a case study on female patients in Poland. Int J Mol Sci. 2023;24(6):5344. doi:10.3390/ijms24065344
  • Nagayama Y, Horie I, Saitoh O, Nakahara M, Abiru N. CD4+CD25+ naturally occurring regulatory T cells and not lymphopenia play a role in the pathogenesis of iodide-induced autoimmune thyroiditis in NOD-H2h4 mice. J Autoimmun. 2007;29(2–3):195–202. doi:10.1016/j.jaut.2007.07.008
  • van Geel N, Speeckaert M, Brochez L, Lambert J, Speeckaert R. Clinical profile of generalized vitiligo patients with associated autoimmune/autoinflammatory diseases. J Eur Acad Dermatol Venereol. 2014;28(6):741–746. doi:10.1111/jdv.12169
  • Chivu AM, Balasescu E, Pandia LD, et al. Vitiligo-thyroid disease association: when, in whom, and why should it be suspected? A systematic review. J Pers Med. 2022;12(12):2048. doi:10.3390/jpm12122048
  • Bae JM, Lee JH, Yun JS, Han B, Han TY. Vitiligo and overt thyroid diseases: a nationwide population-based study in Korea. J Am Acad Dermatol. 2017;76(5):871–878. doi:10.1016/j.jaad.2016.12.034
  • Narita T, Oiso N, Fukai K, Kabashima K, Kawada A, Suzuki T. Generalized vitiligo and associated autoimmune diseases in Japanese patients and their families. Allergol Int. 2011;60(4):505–508. doi:10.2332/allergolint.11-OA-0303
  • Pandve HT. Vitiligo: is it just a dermatological disorder? Indian J Dermatol. 2008;53(1):40–41. doi:10.4103/0019-5154.39745
  • Patel S, Rauf A, Khan H, Meher BR, Hassan SSU. A holistic review on the autoimmune disease vitiligo with emphasis on the causal factors. Biomed Pharmacother. 2017;92:501–508. doi:10.1016/j.biopha.2017.05.095
  • Ahluwalia J, Correa-Selm LM, Rao BK. Vitiligo: not simply a skin disease. Skinmed. 2017;15(2):125–127.
  • Kussainova A, Kassym L, Akhmetova A, et al. Associations between serum levels of brain-derived neurotrophic factor, corticotropin releasing hormone and mental distress in vitiligo patients. Sci Rep. 2022;12(1):7260. doi:10.1038/s41598-022-11028-8
  • Spritz RA. Shared genetic relationships underlying generalized vitiligo and autoimmune thyroid disease. Thyroid. 2010;20(7):745–754. doi:10.1089/thy.2010.1643
  • Spritz RA, Gowan K, Bennett DC, Fain PR. Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet. 2004;74(1):188–191. doi:10.1086/381134
  • Rashighi M, Agarwal P, Richmond JM, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci, trans med. 2014;6(223):223ra223. doi:10.1126/scitranslmed.3007811
  • Tulic MK, Cavazza E, Cheli Y, et al. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nat Commun. 2019;10(1):2178. doi:10.1038/s41467-019-09963-8
  • Caturegli P, Hejazi M, Suzuki K, et al. Hypothyroidism in transgenic mice expressing IFN-gamma in the thyroid. Proc Natl Acad Sci USA. 2000;97(4):1719–1724. doi:10.1073/pnas.020522597
  • Yu S, Sharp GC, Braley-Mullen H. Thyrocytes responding to IFN-gamma are essential for development of lymphocytic spontaneous autoimmune thyroiditis and inhibition of thyrocyte hyperplasia. J Iimmunol. 2006;176(2):1259–1265. doi:10.4049/jimmunol.176.2.1259
  • Jiskra J, Antosova M, Kratky J, et al. CXCR3, CCR5, and CRTH2 chemokine receptor expression in lymphocytes infiltrating thyroid nodules with coincident hashimoto’s thyroiditis obtained by fine needle aspiration biopsy. J Immunol Res. 2016;2016:2743614. doi:10.1155/2016/2743614
  • Menke J, Zeller GC, Kikawada E, et al. CXCL9, but not CXCL10, promotes CXCR3-dependent immune-mediated kidney disease. J Am Soc Nephrol. 2008;19(6):1177–1189. doi:10.1681/ASN.2007111179
  • Hyun JG, Lee G, Brown JB, et al. Anti-interferon-inducible chemokine, CXCL10, reduces colitis by impairing T helper-1 induction and recruitment in mice. Inflamm Bowel Dis. 2005;11(9):799–805. doi:10.1097/01.MIB.0000178263.34099.89
  • Hojman L, Cabrera R, Karsulovic C, Tempio F, Perez C, Lopez M. The role of CXCL10 and IL-18 as markers of repigmentation response in nonsegmental vitiligo treated with narrowband UVB phototherapy: a prospective cohort study. J Invest Dermatol. 2021;141(7):1833–1836 e1831. doi:10.1016/j.jid.2020.12.021
  • Fallahi P, Ferrari SM, Elia G, et al. Novel therapies for thyroid autoimmune diseases. Expert Rev Clin Pharmacol. 2016;9(6):853–861. doi:10.1586/17512433.2016.1157468
  • El-Domyati M, El-Din WH, Rezk AF, et al. Systemic CXCL10 is a predictive biomarker of vitiligo lesional skin infiltration, PUVA, NB-UVB and corticosteroid treatment response and outcome. Arch Dermatol Res. 2022;314(3):275–284. doi:10.1007/s00403-021-02228-9
  • Stoica RA, Dragana N, Ancuceanu R, et al. Interleukin-8, CXCL10, CXCL11 and their role in insulin resistance in adult females with subclinical hypothyroidism and prediabetes. J Clin Transl Endocrinol. 2022;28:100299. doi:10.1016/j.jcte.2022.100299
  • Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmunity Rev. 2015;14(2):174–180. doi:10.1016/j.autrev.2014.10.016
  • Antonelli A, Rotondi M, Ferrari SM, et al. Interferon-gamma-inducible alpha-chemokine CXCL10 involvement in Graves’ ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab. 2006;91(2):614–620. doi:10.1210/jc.2005-1689
  • Richmond JM, Bangari DS, Essien KI, et al. Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease. J Invest Dermatol. 2017;137(2):350–358. doi:10.1016/j.jid.2016.09.016
  • Staab J, Barth PJ, Meyer T. Cell-type-specific expression of STAT transcription factors in tissue samples from patients with lymphocytic thyroiditis. Endocr Pathol. 2012;23(3):141–150. doi:10.1007/s12022-012-9204-0
  • Tomaszewska K, Kozlowska M, Kaszuba A, Lesiak A, Narbutt J, Zalewska-Janowska A. Increased serum levels of IFN-gamma, IL-1beta, and IL-6 in patients with alopecia areata and nonsegmental vitiligo. Oxid Med Cell Longev. 2020;2020:5693572. doi:10.1155/2020/5693572
  • Bhardwaj S, Rani S, Srivastava N, Kumar R, Parsad D. Increased systemic and epidermal levels of IL-17A and IL-1beta promotes progression of non-segmental vitiligo. Cytokine. 2017;91:153–161. doi:10.1016/j.cyto.2016.12.014
  • Zhang QY, Ye XP, Zhou Z, et al. Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis. Nat Commun. 2022;13(1):775. doi:10.1038/s41467-022-28120-2
  • Yang CA, Chiang BL. Inflammasomes and human autoimmunity: a comprehensive review. J Autoimmun. 2015;61:1–8. doi:10.1016/j.jaut.2015.05.001
  • Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–341. doi:10.1016/j.immuni.2009.08.001
  • Belpaire A, van Geel N, Speeckaert R. From IL-17 to IFN-gamma in inflammatory skin disorders: is transdifferentiation a potential treatment target? Front Immunol. 2022;13:932265. doi:10.3389/fimmu.2022.932265
  • Zake T, Skuja S, Kalere I, Konrade I, Groma V. Upregulated tissue expression of T helper (Th) 17 pathogenic interleukin (IL)-23 and IL-1beta in Hashimoto’s thyroiditis but not in Graves’ disease. Endocr J. 2019;66(5):423–430. doi:10.1507/endocrj.EJ18-0396
  • Yang C, Zhang S, Chang X, Huang Y, Cui D, Liu Z. MicroRNA-219a-2-3p modulates the proliferation of thyroid cancer cells via the HPSE/cyclin D1 pathway. Exp Ther Med. 2021;21(6):659. doi:10.3892/etm.2021.10091
  • Wang Y, Zhao J, Zhang C, Wang P, Huang C, Peng H. MiR-219a-2-3p suppresses cell proliferation and promotes apoptosis by targeting MDM2/p53 in pituitary adenomas cells. Biosci Biotechnol Biochem. 2020;84(5):911–918. doi:10.1080/09168451.2020.1715780
  • Yang Z, Dong X, Pu M, et al. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer. 2020;23(3):449–463. doi:10.1007/s10120-019-01019-6
  • Li D, Cai W, Gu R, et al. Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin Immunol. 2013;149(3):411–420. doi:10.1016/j.clim.2013.10.001
  • Liu Y, Tang X, Tian J, et al. Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto’s thyroiditis. Int J Mol Sci. 2014;15(12):21674–21686. doi:10.3390/ijms151221674
  • Mukhatayev Z, Ostapchuk YO, Fang D, Le Poole IC. Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmunity Rev. 2021;20(3):102761. doi:10.1016/j.autrev.2021.102761
  • Abdallah M, Lotfi R, Othman W, Galal R. Assessment of tissue FoxP3+, CD4+ and CD8+ T-cells in active and stable nonsegmental vitiligo. Int J Dermatol. 2014;53(8):940–946. doi:10.1111/ijd.12160
  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–6440. doi:10.1002/jcp.26429
  • Gong Q, Li X, Gong Q, Zhu W, Song G, Lu Y. Hashimoto’s thyroiditis could be secondary to vitiligo: the possibility of antigen crossover and oxidative stress between the two diseases. Arch Dermatol Res. 2016;308(4):277–281. doi:10.1007/s00403-016-1641-z
  • Slominski A, Wortsman J, Kohn L, et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J Invest Dermatol. 2002;119(6):1449–1455. doi:10.1046/j.1523-1747.2002.19617.x
  • Cianfarani F, Baldini E, Cavalli A, et al. TSH receptor and thyroid-specific gene expression in human skin. J Invest Dermatol. 2010;130(1):93–101. doi:10.1038/jid.2009.180