50
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Single-Cell RNA-Sequencing Analyses Identify APLNR, INS-IGF2, RGCC Genes May Be Involved in the Pathogenesis of Systemic Sclerosis Skin

& ORCID Icon
Pages 1059-1069 | Received 26 Jan 2024, Accepted 21 Apr 2024, Published online: 09 May 2024

References

  • Careta MF, Romiti R. Localized scleroderma: clinical spectrum and therapeutic update. An Bras Dermatol. 2015;90(1):62–73. doi:10.1590/abd1806-4841.20152890
  • Li SC. Scleroderma in children and adolescents: localized scleroderma and systemic sclerosis. Pediatr Clin North Am. 2018;65(4):757–781. doi:10.1016/j.pcl.2018.04.002
  • Fett N. Scleroderma: nomenclature, etiology, pathogenesis, prognosis, and treatments: facts and controversies. Clin Dermatol. 2013;31(4):432–437. doi:10.1016/j.clindermatol.2013.01.010
  • Patrintasu DE, Sarkozi HK, Lupusor E, et al. A multidisciplinary approach as a goal for the management of complications in systemic scleroderma: a literature review and case scenario. Diagnostics. 2023;13(21):3332. doi:10.3390/diagnostics13213332
  • Mertens JS, Seyger MMB, Thurlings RM, Radstake T, de Jong E. Morphea and eosinophilic fasciitis: an update. Am J Clin Dermatol. 2017;18(4):491–512. doi:10.1007/s40257-017-0269-x
  • Cutolo M, Trombetta AC, Melsens K, et al. Automated assessment of absolute nailfold capillary number on videocapillaroscopic images: proof of principle and validation in systemic sclerosis. Microcirculation. 2018;25(4):e12447. doi:10.1111/micc.12447
  • Snarskaya ES, Vasileva KD. Localized scleroderma: actual insights and new biomarkers. Int J Dermatol. 2022;61(6):667–674. doi:10.1111/ijd.15811
  • Ide M, Jinnin M, Tomizawa Y, et al. Transforming growth factor β-inhibitor Repsox downregulates collagen expression of scleroderma dermal fibroblasts and prevents bleomycin-induced mice skin fibrosis. Exp Dermatol. 2017;26(11):1139–1143. doi:10.1111/exd.13366
  • Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99(2):1281–1324. doi:10.1152/physrev.00021.2018
  • Di Benedetto P, Ruscitti P, Berardicurti O, et al. Endothelial-to-mesenchymal transition in systemic sclerosis. Clin Exp Immunol. 2021;205(1):12–27. doi:10.1111/cei.13599
  • Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to Mesenchymal Transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med. 2016;5(4):45. doi:10.3390/jcm5040045
  • Chang AC, Fu Y, Garside VC, et al. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288–300. doi:10.1016/j.devcel.2011.06.022
  • Li L, Chen L, Zang J, et al. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism. 2015;64(5):597–610. doi:10.1016/j.metabol.2015.01.014
  • Cipriani P, Di Benedetto P, Ruscitti P, et al. The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol. 2015;42(10):1808–1816. doi:10.3899/jrheum.150088
  • Posadino AM, Erre GL, Cossu A, et al. NADPH-derived ROS generation drives fibrosis and endothelial-to-mesenchymal transition in systemic sclerosis: potential cross talk with circulating miRNAs. Biomol Concepts. 2022;13(1):11–24. doi:10.1515/bmc-2021-0023
  • Katsura A, Suzuki HI, Ueno T, et al. MicroRNA-31 is a positive modulator of endothelial-mesenchymal transition and associated secretory phenotype induced by TGF-β. Genes Cells. 2016;21(1):99–116. doi:10.1111/gtc.12323
  • Chiu YH, Spierings J, van Laar JM, de Vries-Bouwstra JK, van Dijk M, Goldschmeding R. Association of endothelial to mesenchymal transition and cellular senescence with fibrosis in skin biopsies of systemic sclerosis patients: a cross-sectional study. Clin Exp Rheumatol. 2023;41(8):1612–1617. doi:10.55563/clinexprheumatol/i49d3o
  • Gur C, Wang SY, Sheban F, et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell. 2022;185(8):1373–1388 e1320. doi:10.1016/j.cell.2022.03.011
  • Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502. doi:10.1038/nbt.3192
  • Deng W, Su Z, Liang P, et al. Single-cell immune checkpoint landscape of PBMCs stimulated with Candida albicans. Emerg Microbes Infect. 2021;10(1):1272–1283. doi:10.1080/22221751.2021.1942228
  • Ohgo S, Hasegawa S, Hasebe Y, Mizutani H, Nakata S, Akamatsu H. Bleomycin inhibits adipogenesis and accelerates fibrosis in the subcutaneous adipose layer through TGF-beta1. Exp Dermatol. 2013;22(11):769–771. doi:10.1111/exd.12256
  • Kakkar V, Assassi S, Allanore Y, et al. Type 1 interferon activation in systemic sclerosis: a biomarker, a target or the culprit. Curr Opin Rheumatol. 2022;34(6):357–364. doi:10.1097/BOR.0000000000000907
  • Apostolidis SA, Stifano G, Tabib T, et al. Single cell RNA sequencing identifies HSPG2 and APLNR as markers of endothelial cell injury in systemic sclerosis skin. Front Immunol. 2018;9:2191. doi:10.3389/fimmu.2018.02191
  • Wang XY, Li SN, Zhu HF, et al. RGC32 induces epithelial-mesenchymal transition by activating the Smad/Sip1 signaling pathway in CRC. Sci Rep. 2017;7(1):46078. doi:10.1038/srep46078
  • Clark KEN, Xu S, Attah M, Ong VH, Buckley CD, Denton CP. Single-cell analysis reveals key differences between early-stage and late-stage systemic sclerosis skin across autoantibody subgroups. Ann Rheum Dis. 2023;82(12):1568–1579. doi:10.1136/ard-2023-224184
  • Werner G, Sanyal A, Mirizio E, et al. Single-cell transcriptome analysis identifies subclusters with inflammatory fibroblast responses in localized scleroderma. Int J Mol Sci. 2023;24(12):9796. doi:10.3390/ijms24129796
  • Gaydosik AM, Tabib T, Domsic R, Khanna D, Lafyatis R, Fuschiotti P. Single-cell transcriptome analysis identifies skin-specific T-cell responses in systemic sclerosis. Ann Rheum Dis. 2021;80(11):1453–1460. doi:10.1136/annrheumdis-2021-220209
  • Yang Y, Chen M, Qiu Y, Li X, Huang Y, Zhang W. The Apelin/APLNR system modulates tumor immune response by reshaping the tumor microenvironment. Gene. 2022;834:146564. doi:10.1016/j.gene.2022.146564
  • Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471–476. doi:10.1006/bbrc.1998.9489
  • Cheng J, Luo X, Huang Z, Chen L. Apelin/APJ system: a potential therapeutic target for endothelial dysfunction-related diseases. J Cell Physiol. 2019;234(8):12149–12160. doi:10.1002/jcp.27942
  • Kwon HB, Wang S, Helker CS, et al. In vivo modulation of endothelial polarization by Apelin receptor signalling. Nat Commun. 2016;7(1):11805. doi:10.1038/ncomms11805
  • Helker CS, Eberlein J, Wilhelm K, et al. Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. Elife. 2020;9. doi:10.7554/eLife.55589
  • Slukvin II, Vodyanik M. Endothelial origin of mesenchymal stem cells. Cell Cycle. 2011;10(9):1370–1373. doi:10.4161/cc.10.9.15345
  • Lathen C, Zhang Y, Chow J, et al. ERG-APLNR axis controls pulmonary venule endothelial proliferation in pulmonary veno-occlusive disease. Circulation. 2014;130(14):1179–1191. doi:10.1161/CIRCULATIONAHA.113.007822
  • Eggermann T, Perez de Nanclares G, Maher ER, et al. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Clin Epigenet. 2015;7(1):123. doi:10.1186/s13148-015-0143-8
  • Selenou C, Brioude F, Giabicani E, Sobrier ML, Netchine I. IGF2: development, genetic and epigenetic abnormalities. Cells. 2022;11(12):1886. doi:10.3390/cells11121886
  • Smith V, Scire CA, Talarico R, et al. Systemic sclerosis: state of the art on clinical practice guidelines. RMD Open. 2018;4(Suppl 1):e000782 doi:10.1136/rmdopen-2018-000782.
  • Hsu E, Feghali-Bostwick CA. Insulin-like growth factor-II is increased in systemic sclerosis-associated pulmonary fibrosis and contributes to the fibrotic process via Jun N-terminal kinase- and phosphatidylinositol-3 kinase-dependent pathways. Am J Pathol. 2008;172(6):1580–1590. doi:10.2353/ajpath.2008.071021
  • Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The role of SOX9 in IGF-II-mediated pulmonary fibrosis. Int J Mol Sci. 2023;24(14):11234. doi:10.3390/ijms241411234
  • Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273(41):26977–26981. doi:10.1074/jbc.273.41.26977
  • Cui XB, Chen SY. Response gene to complement 32 in vascular diseases. Front Cardiovasc Med. 2018;5:128. doi:10.3389/fcvm.2018.00128
  • Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY. RGC-32 mediates transforming growth factor-beta-induced epithelial-mesenchymal transition in human renal proximal tubular cells. J Biol Chem. 2009;284(14):9426–9432. doi:10.1074/jbc.M900039200
  • Li Z, Xie WB, Escano CS, et al. Response gene to complement 32 is essential for fibroblast activation in renal fibrosis. J Biol Chem. 2011;286(48):41323–41330. doi:10.1074/jbc.M111.259184
  • Luzina IG, Rus V, Lockatell V, et al. Regulator of cell cycle protein (RGCC/RGC-32) protects against pulmonary fibrosis. Am J Respir Cell Mol Biol. 2022;66(2):146–157. doi:10.1165/rcmb.2021-0022OC
  • Tegla CA, Cudrici CD, Nguyen V, et al. RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Exp Mol Pathol. 2015;98(3):328–337. doi:10.1016/j.yexmp.2015.03.011
  • Rosa I, Romano E, Fioretto BS, et al. Lymphatic endothelial-to-myofibroblast transition: a potential new mechanism underlying skin fibrosis in systemic sclerosis. Cells. 2023;12(17):2195. doi:10.3390/cells12172195