65
Views
0
CrossRef citations to date
0
Altmetric
CASE REPORT

Death Caused by Disseminated Herpes Zoster in a Patient with Multiple Myeloma: A Case Report and Literature Review

, ORCID Icon, , & ORCID Icon
Pages 941-951 | Received 15 Feb 2024, Accepted 22 Apr 2024, Published online: 26 Apr 2024

References

  • Shin BS, Na CH, Song IG, Choi KC. A case of human immunodeficiency virus infection initially presented with disseminated herpes zoster. Ann Dermatol. 2010;22(2):199–202. doi:10.5021/ad.2010.22.2.199
  • Valković T, Gačić V, Ivandić J, et al. Infections in hospitalised patients with multiple myeloma: main characteristics and risk factors. Turk J Haematol. 2015;32(3):234–242. doi:10.4274/tjh.2013.0173
  • Shindo T, Kimura S. Immune defects in multiple myeloma. Nihon Rinsho. Japan J Clin Med. 2015;73(1):52–56.
  • Blimark C, Holmberg E, Mellqvist UH, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100(1):107–113. doi:10.3324/haematol.2014.107714
  • Tsai CK, Liu YC, Kuan AS, et al. Risk and impact of invasive fungal infections in patients with multiple myeloma. Ann Hematol. 2020;99(8):1813–1822. doi:10.1007/s00277-020-04125-z
  • Nucci M, Anaissie E. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin Infect Dis. 2009;49(8):1211–1225. doi:10.1086/605664
  • Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–579. doi:10.1111/j.1365-2141.2007.06705.x
  • Schütt P, Brandhorst D, Stellberg W, et al. Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections. Leuk Lymphoma. 2006;47(8):1570–1582. doi:10.1080/10428190500472503
  • Ludwig H, Kumar S. Prevention of infections including vaccination strategies in multiple myeloma. Am J Hematol. 2023;98(Suppl 2):S46–S62. doi:10.1002/ajh.26766
  • Park H, Youk J, Kim HR, et al. Infectious complications in multiple myeloma receiving autologous stem cell transplantation in the past 10 years. Int J Hematol. 2017;106(6):801–810. doi:10.1007/s12185-017-2313-2
  • Zheng G, Guan F, Han X, et al. Efficacy of intermittent, oral famciclovir prophylaxis for bortezomib-induced herpes zoster in multiple myeloma patients. Front Oncol. 2022;12:843032. doi:10.3389/fonc.2022.843032
  • Ghate M, Deshpande S, Tripathy S, et al. Incidence of common opportunistic infections in HIV-infected individuals in Pune, India: analysis by stages of immunosuppression represented by CD4 counts. Int J Infect Dis. 2009;13(1):e1–e8. doi:10.1016/j.ijid.2008.03.029
  • Dosani T, Mailankody S, Korde N, et al. Host-related immunodeficiency in the development of multiple myeloma. Leuk Lymphoma. 2018;59(5):1127–1132. doi:10.1080/10428194.2017.1361026
  • Suen H, Brown R, Yang S, et al. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia. 2016;30(8):1716–1724. doi:10.1038/leu.2016.84
  • Trotta R, Dal Col J, Yu J, et al. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol. 2008;181(6):3784–3792. doi:10.4049/jimmunol.181.6.3784
  • Cowan AJ, Green DJ, Kwok M, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327(5):464–477. doi:10.1001/jama.2022.0003
  • Nahi H, Chrobok M, Gran C, et al. Infectious complications and NK cell depletion following daratumumab treatment of multiple myeloma. PLoS One. 2019;14(2):e0211927. doi:10.1371/journal.pone.0211927
  • Yarlagadda L, Gundarlapalli S, Parikh R, et al. Salvage autologous stem cell transplantation in daratumumab-refractory multiple myeloma. Cancers. 2021;13(16):4019. doi:10.3390/cancers13164019
  • John L, Sauer S, Hegenbart U, et al. Idecabtagene vicleucel is well tolerated and effective in relapsed/refractory myeloma patients with prior allogeneic stem cell transplantation. Transplant Cell Ther. 2023;29(10):609.e1–609.e6. doi:10.1016/j.jtct.2023.06.010
  • Cliff ERS, Reynolds G, Popat R, Teh BW, Kesselheim AS, Mohyuddin GR. Acknowledging infection risk in bispecific antibody trials in the treatment of multiple myeloma. J Clin Oncol. 2023;41(10):1949–1951. doi:10.1200/JCO.22.02197
  • Teh BW, Teng JC, Urbancic K, et al. Invasive fungal infections in patients with multiple myeloma: a multi-center study in the era of novel myeloma therapies. Haematologica. 2015;100(1):e28–e31. doi:10.3324/haematol.2014.114025
  • Teh BW, Harrison SJ, Worth LJ, Thursky KA, Slavin MA. Infection risk with immunomodulatory and proteasome inhibitor-based therapies across treatment phases for multiple myeloma: a systematic review and meta-analysis. Eur J Cancer. 2016;67:21–37. doi:10.1016/j.ejca.2016.07.025
  • Brioli A, Klaus M, Sayer H, et al. The risk of infections in multiple myeloma before and after the advent of novel agents: a 12-year survey. Ann Hematol. 2019;98(3):713–722. doi:10.1007/s00277-019-03621-1
  • Blanco B, Pérez-Simón JA, Sánchez-Abarca LI, et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood. 2006;107(9):3575–3583. doi:10.1182/blood-2005-05-2118
  • Jones JO, Arvin AM. Inhibition of the NF-kappaB pathway by varicella-zoster virus in vitro and in human epidermal cells in vivo. J Virol. 2006;80(11):5113–5124. doi:10.1128/JVI.01956-05
  • Berges C, Haberstock H, Fuchs D, et al. Proteasome inhibition suppresses essential immune functions of human CD4+ T cells. Immunology. 2008;124(2):234–246. doi:10.1111/j.1365-2567.2007.02761.x
  • Heider U, Rademacher J, Kaiser M, Kleeberg L, von Metzler I, Sezer O. Decrease in CD4+ T-cell counts in patients with multiple myeloma treated with bortezomib. Clin Lymphoma Myeloma Leuk. 2010;10(2):134–137. doi:10.3816/CLML.2010.n.019
  • Kim SJ, Kim K, Kim BS, et al. Bortezomib and the increased incidence of herpes zoster in patients with multiple myeloma. Clin Lymphoma Myeloma. 2008;8(4):237–240. doi:10.3816/CLM.2008.n.031
  • Chanan-Khan A, Sonneveld P, Schuster MW, et al. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol. 2008;26(29):4784–4790. doi:10.1200/JCO.2007.14.9641
  • Terpos E, Kleber M, Engelhardt M, et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100(10):1254–1266. doi:10.3324/haematol.2014.117176
  • Redelman-Sidi G, Michielin O, Cervera C, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Immune checkpoint inhibitors, cell adhesion inhibitors, sphingosine-1-phosphate receptor modulators and proteasome inhibitors). Clin Microbiol Infect. 2018;2(Suppl 2):S95–S107. doi:10.1016/j.cmi.2018.01.030
  • Vickrey E, Allen S, Mehta J, Singhal S. Acyclovir to prevent reactivation of varicella zoster virus (herpes zoster) in multiple myeloma patients receiving bortezomib therapy. Cancer. 2009;115(1):229–232. doi:10.1002/cncr.24006
  • Swaika A, Paulus A, Miller KC, et al. Acyclovir prophylaxis against varicella zoster virus reactivation in multiple myeloma patients treated with bortezomib-based therapies: a retrospective analysis of 100 patients. J Support Oncol. 2012;10(4):155–159. doi:10.1016/j.suponc.2011.10.006
  • Fukushima T, Sato T, Nakamura T, et al. Daily 500 mg valacyclovir is effective for prevention of Varicella zoster virus reactivation in patients with multiple myeloma treated with bortezomib. Anticancer Res. 2012;32(12):5437–5440.
  • Ying T, Aijun L. Chen Wenming Clinical observation of the use of bortezomib in the prevention of herpes zoster in patients with multiple myeloma using valacilovir. Chin J Clin Physic. 2013;7(12):5634–5636.
  • Mateos MV, Hernández JM, Hernández MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter Phase 1/2 study. Blood. 2006;108(7):2165–2172. doi:10.1182/blood-2006-04-019778
  • Pour L, Adam Z, Buresova L, et al. Varicella-zoster virus prophylaxis with low-dose Acyclovir in patients with multiple myeloma treated with bortezomib. Clin Lymphoma Myeloma. 2009;9(2):151–153. doi:10.3816/CLM.2009.n.036
  • Minarik J, Pika T, Bacovsky J, Langova K, Scudla V. Low-dose Acyclovir prophylaxis for bortezomib-induced herpes zoster in multiple myeloma patients. Br J Haematol. 2012;159(1):111–113. doi:10.1111/j.1365-2141.2012.09233.x
  • Kim SJ, Kim K, Do YR, Bae SH, Yang DH, Lee JJ. Low-dose Acyclovir is effective for prevention of herpes zoster in myeloma patients treated with bortezomib: a report from the Korean Multiple Myeloma Working Party (KMMWP) Retrospective Study. Jpn J Clin Oncol. 2011;41(3):353–357. doi:10.1093/jjco/hyq194
  • Asano-Mori Y, Kanda Y, Oshima K, et al. Long-term ultra-low-dose Acyclovir against varicella-zoster virus reactivation after allogeneic hematopoietic stem cell transplantation. Am J Hematol. 2008;83(6):472–476. doi:10.1002/ajh.21152
  • Abbasov E, Metzner B, Müller TH, et al. Herpes zoster prophylaxis with low-dose Acyclovir in patients with malignant lymphoma and multiple myeloma treated with autologous stem cell transplantation. Eur J Haematol. 2022;109(3):298–304. doi:10.1111/ejh.13810
  • Winston DJ, Mullane KM, Cornely OA, et al. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: an international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10135):2116–2127. doi:10.1016/S0140-6736(18)30631-7
  • Dagnew AF, Ilhan O, Lee WS, et al. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in adults with haematological malignancies: a Phase 3, randomised, clinical trial and post-hoc efficacy analysis [published correction appears in Lancet Infect Dis. 2020 Jan; 20(1):e1]. Lancet Infect Dis. 2019;19(9):988–1000. doi:10.1016/S1473-3099(19)30163-X
  • Stadtmauer EA, Sullivan KM, El Idrissi M, et al. Adjuvanted recombinant zoster vaccine in adult autologous stem cell transplant recipients: polyfunctional immune responses and lessons for clinical practice. Hum Vaccin Immunother. 2021;17(11):4144–4154. doi:10.1080/21645515.2021.1953346
  • Teh BW, Harrison SJ, Allison CC, et al. Predicting risk of infection in patients with newly diagnosed multiple myeloma: utility of immune profiling. Front Immunol. 2017;8:1247. doi:10.3389/fimmu.2017.01247
  • Dumontet C, Hulin C, Dimopoulos MA, et al. A predictive model for risk of early grade ≥ 3 infection in patients with multiple myeloma not eligible for transplant: analysis of the FIRST trial. Leukemia. 2018;32(6):1404–1413. doi:10.1038/s41375-018-0133-x
  • Mai EK, Huhn S, Miah K, et al. Implications and prognostic impact of mass spectrometry in patients with newly-diagnosed multiple myeloma. Blood Cancer J. 2023;13(1):1. doi:10.1038/s41408-022-00772-9
  • Mai EK, Hielscher T, Bertsch U, et al. Predictors of early morbidity and mortality in newly diagnosed multiple myeloma: data from five randomized, controlled, phase III trials in 3700 patients. Leukemia. 2024;38(3):640–647. doi:10.1038/s41375-023-02105-6