425
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Morphological and Elemental Evaluation of Investigative Mouthwashes to Repair Acid-Eroded Tooth Surface

ORCID Icon, , , , , , ORCID Icon, ORCID Icon, , , , & show all
Pages 1-11 | Received 23 Sep 2022, Accepted 14 Dec 2022, Published online: 05 Jan 2023

References

  • Imfeld T. Dental erosion. Definition, classification and links. Eur J Oral Sci. 1996;104(2 Pt 2):151–155. doi:10.1111/j.1600-0722.1996.tb00063.x
  • Taji S, Seow WK. A literature review of dental erosion in children. Aust Dent J. 2010;55(4):358–475. doi:10.1111/j.1834-7819.2010.01255.x
  • Jaeggi T, Lussi A. Prevalence, incidence and distribution of erosion. Monogr Oral Sci. 2014;25:55–73. doi:10.1159/000360973
  • Kreulen CM, Van ‘t Spijker A, Rodriguez JM, Bronkhorst EM, Creugers NH, Bartlett DW. Systematic review of the prevalence of tooth wear in children and adolescents. Caries Res. 2010;44(2):151–159. doi:10.1159/000308567
  • Salas MM, Nascimento GG, Huysmans MC, Demarco FF. Estimated prevalence of erosive tooth wear in permanent teeth of children and adolescents: an epidemiological systematic review and meta-regression analysis. J Dent. 2015;43(1):42–50. doi:10.1016/j.jdent.2014.10.012
  • Yanushevich OO, Maev IV, Krikheli NI, et al. Prevalence and risk of dental erosion in patients with gastroesophageal reflux disease: a meta-analysis. Dent J. 2022;10(7):126. doi:10.3390/dj10070126
  • Pallier A, Karimova A, Boillot A, et al. Dental and periodontal health in adults with eating disorders: a case-control study. J Dent. 2019;84:55–59. doi:10.1016/j.jdent.2019.03.005
  • Paszynska E, Hernik A, Slopien A, et al. Risk of dental caries and erosive tooth wear in 117 children and adolescents’ anorexia nervosa population-a case-control study. Front Psychiatry. 2022;13:874263. doi:10.3389/fpsyt.2022.874263
  • Amaechi BT, Higham SM. Dental erosion: possible approaches to prevention and control. J Dent. 2005;33(3):243–252. doi:10.1016/j.jdent.2004.10.014
  • Reddy A, Norris DF, Momeni SS, Waldo B, Ruby JD. The pH of beverages in the United States. J Am Dent Assoc. 2016;147(4):255–263. doi:10.1016/j.adaj.2015.10.019
  • Søvik JB, Skudutyte-Rysstad R, Tveit AB, Sandvik L, Mulic A. Sour sweets and acidic beverage consumption are risk indicators for dental erosion. Caries Res. 2015;49(3):243–250. doi:10.1159/000371896
  • Zero DT, Lussi A. Erosion--chemical and biological factors of importance to the dental practitioner. Int Dent J. 2005;55(4 Suppl 1):285–290. doi:10.1111/j.1875-595x.2005.tb00066.x
  • Saads Carvalho T, Lussi A. Chapter 9: acidic beverages and foods associated with dental erosion and erosive tooth wear. Monogr Oral Sci. 2020;28:91–98. doi:10.1159/000455376
  • Milosevic A, Agrawal N, Redfearn P, Mair L. The occurrence of toothwear in users of Ecstasy (3,4-methylenedioxymethamphetamine). Community Dent Oral Epidemiol. 1999;27(4):283–287. doi:10.1111/j.1600-0528.1998.tb02022.x
  • Richards JR, Brofeldt BT. Patterns of tooth wear associated with methamphetamine use. J Periodontol. 2000;71(8):1371–1374. doi:10.1902/jop.2000.71.8.1371
  • Rao KA, Thomas S, Kumar JK, Narayan V. Prevalence of dentinal hypersensitivity and dental erosion among competitive swimmers, Kerala, India. Indian J Community Med. 2019;44(4):390–393. doi:10.4103/ijcm.IJCM_213_19
  • Hara AT, Zero DT. The potential of saliva in protecting against dental erosion. Monogr Oral Sci. 2014;25:197–205. doi:10.1159/000360372
  • Carvalho TS, Colon P, Ganss C, et al. Consensus report of the European Federation of Conservative Dentistry: erosive tooth wear--diagnosis and management. Clin Oral Investig. 2015;19(7):1557–1561. doi:10.1007/s00784-015-1511-7
  • Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dent. 2001;29(5):371–376. doi:10.1016/s0300-5712(01)00026-4
  • Attin T, Knöfel S, Buchalla W, Tütüncü R. In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel. Caries Res. 2001;35(3):216–222. doi:10.1159/000047459
  • Somani R, Jaidka S, Singh DJ, Arora V. Remineralizing potential of various agents on dental erosion. J Oral Biol Craniofac Res. 2014;4(2):104–108. doi:10.1016/j.jobcr.2014.05.001
  • Passos VF, de Vasconcellos AA, Pequeno JH, Rodrigues LK, Santiago SL. Effect of commercial fluoride dentifrices against hydrochloric acid in an erosion-abrasion model. Clin Oral Investig. 2015;19(1):71–76. doi:10.1007/s00784-014-1213-6
  • Attin T, Deifuss H, Hellwig E. Influence of acidified fluoride gel on abrasion resistance of eroded enamel. Caries Res. 1999;33(2):135–139. doi:10.1159/000016507
  • Lussi A, Carvalho TS. The future of fluorides and other protective agents in erosion prevention. Caries Res. 2015;49(Suppl 1):18–29. doi:10.1159/000380886
  • Bellamy PG, Harris R, Date RF, et al. In situ clinical evaluation of a stabilised, stannous fluoride dentifrice. Int Dent J. 2014;64(Suppl 1):43–50. doi:10.1111/idj.12102
  • Lussi A, Buzalaf MAR, Duangthip D, et al. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur Arch Paediatr Dent. 2019;20(6):517–527. doi:10.1007/s40368-019-00420-0
  • Chawhuaveang DD, Yu OY, Yin IX, Lam WYH, Chu CH. Topical agents for nonrestorative management of dental erosion: a narrative review. Healthcare. 2022;10(8):1413. doi:10.3390/healthcare10081413
  • Körner P, Nguyen TP, Hamza B, Attin T, Wegehaupt FJ. Enamel softening can be reduced by rinsing with a fluoride mouthwash before dental erosion but not with a calcium solution. Oral Health Prev Dent. 2021;19(1):587–594. doi:10.3290/j.ohpd.b2259087
  • Lelli M, Putignano A, Marchetti M, et al. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study. Front Physiol. 2014;5:333. doi:10.3389/fphys.2014.00333
  • Colombo M, Beltrami R, Rattalino D, Mirando M, Chiesa M, Poggio C. Protective effects of a zinc-hydroxyapatite toothpaste on enamel erosion: SEM study. Ann Stomatol. 2017;7(3):38–45. doi:10.11138/ads/2016.7.3.038
  • Poggio C, Gulino C, Mirando M, Colombo M, Pietrocola G. Protective effect of zinc-hydroxyapatite toothpastes on enamel erosion: an in vitro study. J Clin Exp Dent. 2017;9(1):e118–e122. doi:10.4317/jced.53068
  • Hornby K, Evans M, Long M, Joiner A, Laucello M, Salvaderi A. Enamel benefits of a new hydroxyapatite containing fluoride toothpaste. Int Dent J. 2009;59(6S1):325–331. doi:10.1002/idj.2009.59.6s1.325
  • Fabritius-Vilpoux K, Enax J, Herbig M, Raabe D, Fabritius HO. Quantitative affinity parameters of synthetic hydroxyapatite and enamel surfaces in vitro. Bioinspired Biomimet Nanobiomater. 2019;8(2):141–153. doi:10.1680/bibn.18.00035
  • Oberdoli D, Bommer C, Begzati A, Haliti F, Heinzel-Gutenbrunner M, Juric H. Randomized clinical trial investigating self-assembling peptide P11-4 for treatment of early occlusal caries. Sci Rep. 2020;10(1):4195. doi:10.1038/s41598-020-60815-8
  • Kind L, Stevanovic S, Wuttig S, et al. Biomimetic remineralization of carious lesions by self-assembling peptide. J Dent Res. 2017;96(7):790–797. doi:10.1177/0022034517698419
  • Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater. 2013;9(7):7289–7297. doi:10.1016/j.actbio.2013.04.004
  • Wang J, Liu Z, Ren B, et al. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis. J Mater Sci Mater Med. 2021;32(9):115. doi:10.1007/s10856-021-06583-x
  • Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J Mater Chem B. 2015;3:3112–3129. doi:10.1039/C5TB00163C
  • Ruan Q, Moradian-Oldak J. Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface. J Vis Exp. 2014;(89):51606. doi:10.3791/51606
  • Ruan Q, Siddiqah N, Li X, Nutt S, Moradian-Oldak J. Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect Tissue Res. 2014;55(Suppl1):150–154. doi:10.3109/03008207.2014.923856
  • Ruan Q, Liberman D, Bapat R, Chandrababu KB, Phark JH, Moradian-Oldak J. Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems. J Biomed Eng Inform. 2016;2(1):119–128. doi:10.5430/jbei.v2n1p119
  • Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30(4):478–483. doi:10.1016/j.biomaterials.2008.10.019
  • Mukherjee K, Ruan Q, Liberman D, White SN, Moradian-Oldak J. Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel. J Mater Res. 2016;31(5):556–563. doi:10.1557/jmr.2016.64
  • Neshatian M, Holcroft J, Kishen A, De Souza G, Ganss B. Promoting mineralization at biological interfaces Ex vivo with novel amelotin-based bio-nano complexes. Mater Today Bio. 2022;14:100255. doi:10.1016/j.mtbio.2022.100255
  • Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci. 2012;17(6):1996–2023. doi:10.2741/4034
  • Amaechi BT. Protocols to study dental caries in vitro: pH cycling models. Methods Mol Biol. 2019;1922:379–392. doi:10.1007/978-1-4939-9012-2_34
  • Featherstone JD, Stookey GK, Kaminski MA, Faller RV. Recommendation for a non-animal alternative to rat caries testing. Am J Dent. 2011;24(5):289–294.
  • Stookey GK, Featherstone JD, Rapozo-Hilo M, et al. The Featherstone laboratory pH cycling model: a prospective, multi-site validation exercise. Am J Dent. 2011;24(5):322–328.