179
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Bridging Reduced Grip Strength and Altered Executive Function: Specific Brain White Matter Structural Changes in Patients with Alzheimer’s Disease

, , ORCID Icon, , , , ORCID Icon & show all
Pages 93-107 | Received 02 Oct 2023, Accepted 09 Jan 2024, Published online: 16 Jan 2024

References

  • Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. doi:10.1016/S0140-6736(20)30367-6
  • Dercon Q, Nicholas JM, James SN, Schott JM, Richards M. Grip strength from midlife as an indicator of later-life brain health and cognition: evidence from a British birth cohort. BMC Geriatr. 2021;21:475. doi:10.1186/s12877-021-02411-7
  • Jiang R, Westwater ML, Noble S, et al. Associations between grip strength, brain structure, and mental health in > 40,000 participants from the UK Biobank. BMC Med. 2022;20:286. doi:10.1186/s12916-022-02490-2
  • Pietroboni AM, Colombi A, Carandini T, Scarpini E, Galimberti D, Bozzali M. The Role of Amyloid-beta in White Matter Damage: possible Common Pathogenetic Mechanisms in Neurodegenerative and Demyelinating Diseases. J Alzheimers Dis. 2020;78:13–22. doi:10.3233/JAD-200868
  • Nasrabady SE, Rizvi B, Goldman JE, Brickman AM. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun. 2018;6:22. doi:10.1186/s40478-018-0515-3
  • Chu TH, Cummins K, Sparling JS, et al. Axonal and myelinic pathology in 5xFAD Alzheimer’s mouse spinal cord. PLoS One. 2017;12:e0188218. doi:10.1371/journal.pone.0188218
  • Chang YL, Chen TF, Shih YC, Chiu MJ, Yan SH, Tseng WY. Regional cingulum disruption, not gray matter atrophy, detects cognitive changes in amnestic mild cognitive impairment subtypes. J Alzheimers Dis. 2015;44:125–138. doi:10.3233/JAD-141839
  • Duchowny KA, Ackley SF, Brenowitz WD, et al. Associations Between Handgrip Strength and Dementia Risk, Cognition, and Neuroimaging Outcomes in the UK Biobank Cohort Study. JAMA Network Open. 2022;5:e2218314. doi:10.1001/jamanetworkopen.2022.18314
  • Jones DK, Knosche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239–254. doi:10.1016/j.neuroimage.2012.06.081
  • Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–2766. doi:10.1002/hbm.22099
  • Raffelt DA, Tournier JD, Smith RE, et al. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage. 2017;144:58–73. doi:10.1016/j.neuroimage.2016.09.029
  • Raffelt DA, Smith RE, Ridgway GR, et al. Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55. doi:10.1016/j.neuroimage.2015.05.039
  • Mito R, Raffelt D, Dhollander T, et al. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 2018;141:888–902. doi:10.1093/brain/awx355
  • Luo X, Wang S, Jiaerken Y, et al. Distinct fiber-specific white matter reductions pattern in early- and late-onset Alzheimer’s disease. Aging. 2021;13:12410–12430. doi:10.18632/aging.202702
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269. doi:10.1016/j.jalz.2011.03.005
  • Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149:351–356. doi:10.2214/ajr.149.2.351
  • Liu H, Jiao J, Zhu M, et al. Nutritional Status According to the Short-Form Mini Nutritional Assessment (MNA-SF) and Clinical Characteristics as Predictors of Length of Stay, Mortality, and Readmissions Among Older Inpatients in China: a National Study. Front Nutr. 2022;9:815578. doi:10.3389/fnut.2022.815578
  • Jia RX, Liang JH, Xu Y, Wang YQ. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis. BMC Geriatr. 2019;19:181. doi:10.1186/s12877-019-1175-2
  • Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21:300–307 e302. doi:10.1016/j.jamda.2019.12.012
  • Dhollander T, Clemente A, Singh M, et al. Fixel-based Analysis of Diffusion MRI: methods, Applications, Challenges and Opportunities. Neuroimage. 2021;241:118417. doi:10.1016/j.neuroimage.2021.118417
  • Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25. doi:10.1002/hbm.1058
  • Qiao S, Li H, Guo F, Cai G, Zhang Y. Research progress on cognitive impairment and the expression of serum inflammatory markers in patients with white matter hyperintensities: a narrative review. Ann Transl Med. 2022;10:421. doi:10.21037/atm-22-1016
  • Melazzini L, Vitali P, Olivieri E, et al. White Matter Hyperintensities Quantification in Healthy Adults: a Systematic Review and Meta-Analysis. J Magn Reson Imaging. 2021;53:1732–1743. doi:10.1002/jmri.27479
  • Kwak SY, Kwak SG, Yoon TS, Kong EJ, Chang MC. Deterioration of Brain Neural Tracts in Elderly Women with Sarcopenia. Am J Geriatr Psychiatry. 2019;27:774–782. doi:10.1016/j.jagp.2019.02.018
  • Li Y, Guo T, Guan X, et al. Fixel-based analysis reveals fiber-specific alterations during the progression of Parkinson’s disease. Neuroimage Clin. 2020;27:102355. doi:10.1016/j.nicl.2020.102355
  • Esteban-Cornejo I, Ho FK, Petermann-Rocha F, et al. Handgrip strength and all-cause dementia incidence and mortality: findings from the UK Biobank prospective cohort study. J Cachexia, Sarcopenia Muscle. 2022;13:1514–1525. doi:10.1002/jcsm.12857
  • Kuo K, Zhang YR, Chen SD, et al. Associations of grip strength, walking pace, and the risk of incident dementia: a prospective cohort study of 340212 participants. Alzheimers Dement. 2023;19:1415–1427. doi:10.1002/alz.12793
  • Herold F, Labott BK, Grassler B, et al. A Link between Handgrip Strength and Executive Functioning: a Cross-Sectional Study in Older Adults with Mild Cognitive Impairment and Healthy Controls. Healthcare. 2022;10. doi:10.3390/healthcare10020230
  • Teipel S, Grothe MJ, Zhou J, et al. Measuring Cortical Connectivity in Alzheimer’s Disease as a Brain Neural Network Pathology: toward Clinical Applications. J Int Neuropsychol Soc. 2016;22:138–163. doi:10.1017/S1355617715000995
  • Yang Z, Chen Y, Hou X, Xu Y, Bai F. Topologically convergent and divergent large scale complex networks among Alzheimer’s disease spectrum patients: a systematic review. Heliyon. 2023;9:e15389. doi:10.1016/j.heliyon.2023.e15389
  • Tsolaki E, Sheth SA, Pouratian N. Variability of white matter anatomy in the subcallosal cingulate area. Hum Brain Mapp. 2021;42:2005–2017. doi:10.1002/hbm.25341
  • Vlegels N, Ossenkoppele R, van der Flier WM, et al. Alzheimer’s Disease Neuroimaging I. Does Loss of Integrity of the Cingulum Bundle Link Amyloid-beta Accumulation and Neurodegeneration in Alzheimer’s Disease? J Alzheimers Dis. 2022;89:39–49. doi:10.3233/JAD-220024
  • Hau J, Sarubbo S, Perchey G, et al. Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: anatomical Stem-Based Virtual Dissection. Front Neuroanat. 2016;10:58. doi:10.3389/fnana.2016.00058
  • El Said SMS, Adly NN, Abdul-Rahman SA. Executive Function and Physical Function Among Community-Dwelling Egyptian Older Adults. J Alzheimers Dis. 2021;80:1583–1589. doi:10.3233/JAD-201423
  • Hooghiemstra AM, Ramakers I, Sistermans N, et al. Gait Speed and Grip Strength Reflect Cognitive Impairment and Are Modestly Related to Incident Cognitive Decline in Memory Clinic Patients With Subjective Cognitive Decline and Mild Cognitive Impairment: findings From the 4C Study. J Gerontol a Biol Sci Med Sci. 2017;72:846–854. doi:10.1093/gerona/glx003
  • Wang XD, Ren M, Zhu MW, et al. Corpus callosum atrophy associated with the degree of cognitive decline in patients with Alzheimer’s dementia or mild cognitive impairment: a meta-analysis of the region of interest structural imaging studies. J Psychiatr Res. 2015;63:10–19. doi:10.1016/j.jpsychires.2015.02.005
  • Van Schependom J, Niemantsverdriet E, Smeets D, Engelborghs S. Callosal circularity as an early marker for Alzheimer’s disease. Neuroimage Clin. 2018;19:516–526. doi:10.1016/j.nicl.2018.05.018
  • Liu Y, Hsu CH, Huang CC, et al. Connectivity-Based Topographical Changes of the Corpus Callosum During Aging. Front Aging Neurosci. 2021;13:753236. doi:10.3389/fnagi.2021.753236
  • Innocenti GM, Schmidt K, Milleret C, et al. The functional characterization of callosal connections. Prog Neurobiol. 2022;208:102186. doi:10.1016/j.pneurobio.2021.102186
  • Wahl M, Lauterbach-Soon B, Hattingen E, Hubers A, Ziemann U. Callosal anatomical and effective connectivity between primary motor cortices predicts visually cued bimanual temporal coordination performance. Brain Struct Funct. 2016;221:3427–3443. doi:10.1007/s00429-015-1110-z
  • Weitnauer L, Frisch S, Melie-Garcia L, et al. Mapping grip force to motor networks. Neuroimage. 2021;229:117735. doi:10.1016/j.neuroimage.2021.117735
  • Luna FG, Lupianez J, Martin-Arevalo E. Microstructural white matter connectivity underlying the attentional networks system. Behav Brain Res. 2021;401:113079. doi:10.1016/j.bbr.2020.113079
  • Garnier-Crussard A, Bougacha S, Wirth M, et al. White matter hyperintensity topography in Alzheimer’s disease and links to cognition. Alzheimers Dement. 2022;18:422–433. doi:10.1002/alz.12410
  • Gaubert M, Lange C, Garnier-Crussard A, et al. Topographic patterns of white matter hyperintensities are associated with multimodal neuroimaging biomarkers of Alzheimer’s disease. Alzheimers Res Ther. 2021;13:29. doi:10.1186/s13195-020-00759-3
  • Sihvonen AJ, Virtala P, Thiede A, Laasonen M, Kujala T. Structural white matter connectometry of reading and dyslexia. Neuroimage. 2021;241:118411. doi:10.1016/j.neuroimage.2021.118411
  • Krogsrud SK, Fjell AM, Tamnes CK, et al. Development of white matter microstructure in relation to verbal and visuospatial working memory-A longitudinal study. PLoS One. 2018;13:e0195540. doi:10.1371/journal.pone.0195540
  • Wang S, Jiaerken Y, Yu X, et al. Understanding the association between psychomotor processing speed and white matter hyperintensity: a comprehensive multi-modality MR imaging study. Hum Brain Mapp. 2020;41:605–616. doi:10.1002/hbm.24826
  • Muller T, Payton NM, Kalpouzos G, et al. Cognitive, Genetic, Brain Volume, and Diffusion Tensor Imaging Markers as Early Indicators of Dementia. J Alzheimers Dis. 2020;77:1443–1453. doi:10.3233/JAD-200445
  • Lin YC, Shih YC, Tseng WY, et al. Cingulum correlates of cognitive functions in patients with mild cognitive impairment and early Alzheimer’s disease: a diffusion spectrum imaging study. Brain Topogr. 2014;27:393–402. doi:10.1007/s10548-013-0346-2
  • Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104–127. doi:10.1016/j.neubiorev.2018.05.008
  • Zhai F, Liu J, Su N, et al. Disrupted white matter integrity and network connectivity are related to poor motor performance. Sci Rep. 2020;10:18369. doi:10.1038/s41598-020-75617-1
  • Cordani C, Meani A, Esposito F, et al. Imaging correlates of hand motor performance in multiple sclerosis: a multiparametric structural and functional MRI study. Mult Scler. 2020;26:233–244. doi:10.1177/1352458518822145
  • Meysami S, Raji CA, Glatt RM, et al. Handgrip Strength Is Related to Hippocampal and Lobar Brain Volumes in a Cohort of Cognitively Impaired Older Adults with Confirmed Amyloid Burden. J Alzheimers Dis. 2023;91:999–1006. doi:10.3233/JAD-220886
  • Liang Y, Chen Y, Li H, et al. Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients. Curr Alzheimer Res. 2015;12:255–265. doi:10.2174/1567205012666150302155336
  • Yang FPG, Bal SS, Lee JF, Chen CC. White Matter Differences in Networks in Elders with Mild Cognitive Impairment and Alzheimer’s Disease. Brain Connect. 2021;11:180–188. doi:10.1089/brain.2020.0767
  • Zheng Y, Wang D, Ye Q, Zou F, Li Y, Kwok SC. Diffusion property and functional connectivity of superior longitudinal fasciculus underpin human metacognition. Neuropsychologia. 2021;156:107847. doi:10.1016/j.neuropsychologia.2021.107847
  • Nakajima R, Kinoshita M, Shinohara H, Nakada M. The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav. 2020;14:2817–2830. doi:10.1007/s11682-019-00187-4
  • Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Differences in structural MRI and diffusion tensor imaging underlie visuomotor performance declines in older adults with an increased risk for Alzheimer’s disease. Front Aging Neurosci. 2022;14:1054516. doi:10.3389/fnagi.2022.1054516
  • Richardson JK, Ellmers TJ. The relationship between clinical measures of cognitive function and grip strength in healthy older adults. BMC Geriatr. 2022;22:907. doi:10.1186/s12877-022-03629-9
  • Pichet Binette A, Theaud G, Rheault F, et al. Bundle-specific associations between white matter microstructure and Abeta and tau pathology in preclinical Alzheimer’s disease. Elife. 2021:10. doi:10.7554/eLife.62929
  • Serra L, Cercignani M, Basile B, et al. White matter damage along the uncinate fasciculus contributes to cognitive decline in AD and DLB. Curr Alzheimer Res. 2012;9:326–333. doi:10.2174/156720512800107555
  • Granger SJ, Leal SL, Larson MS, et al. Integrity of the uncinate fasciculus is associated with emotional pattern separation-related fMRI signals in the hippocampal dentate and CA3. Neurobiol Learn Mem. 2021;177:107359. doi:10.1016/j.nlm.2020.107359
  • van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-beta-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci. 2020;21:21–35. doi:10.1038/s41583-019-0240-3
  • Firth JA, Smith L, Sarris J, et al. Handgrip Strength Is Associated With Hippocampal Volume and White Matter Hyperintensities in Major Depression and Healthy Controls: a UK Biobank Study. Psychosom Med. 2020;82:39–46. doi:10.1097/PSY.0000000000000753
  • Huang J, Wang X, Zhu H, et al. Association between grip strength and cognitive impairment in older American adults. Front Mol Neurosci. 2022;15:973700. doi:10.3389/fnmol.2022.973700
  • Jang SH, Jang WH. Change of the Corticospinal Tract in the Unaffected Hemisphere by Change of the Dominant Hand Following Stroke: a Cohort Study. Medicine (Baltimore). 2016;95:e2620. doi:10.1097/MD.0000000000002620
  • Agoncillo M, Yu J, Gunton JE. The Role of Vitamin D in Skeletal Muscle Repair and Regeneration in Animal Models and Humans: a Systematic Review. Nutrients. 2023;15. doi:10.3390/nu15204377
  • Bouchi R, Fukuda T, Takeuchi T, et al. Dipeptidyl peptidase 4 inhibitors attenuates the decline of skeletal muscle mass in patients with type 2 diabetes. Diabetes Metab Res Rev. 2018;34. doi:10.1002/dmrr.2957
  • Ekiz T, Kara M, Ata AM, et al. Rewinding sarcopenia: a narrative review on the renin-angiotensin system. Aging Clin Exp Res. 2021;33:2379–2392. doi:10.1007/s40520-020-01761-3