112
Views
0
CrossRef citations to date
0
Altmetric
METHODOLOGY

Frequentist, Bayesian Analysis and Complementary Statistical Tools for Geriatric and Rehabilitation Fields: Are Traditional Null-Hypothesis Significance Testing Methods Sufficient?

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 277-287 | Received 18 Oct 2023, Accepted 06 Feb 2024, Published online: 16 Feb 2024

References

  • Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sports Med. 2014;44:1113–1124. doi:10.1007/s40279-014-0197-3
  • Bonafiglia JT, Preobrazenski N, Gurd BJ. A systematic review examining the approaches used to estimate interindividual differences in trainability and classify individual responses to exercise training. Front Physiol. 2021;12:1–18. doi:10.3389/fphys.2021.665044
  • Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond “p <0.05”. Am Stat. 2019;73(sup1):1–19. doi:10.1080/00031305.2019.1583913
  • Fornacon-Wood I, Mistry H, Johnson-Hart C, Faivre-Finn C, O’Connor JPB, Price GJ. Understanding the differences between bayesian and frequentist statistics. Int J Radiat Oncol Biol Phys. 2022;112(5):1076–1082. doi:10.1016/j.ijrobp.2021.12.011
  • Salsburg D. The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. Macmillan; 2001.
  • Field AP. Discovering Statistics Using IBM SPSS Statistics. sage; 2018.
  • Berg KE, Latin RW. Essentials of Research Methods in Health, Physical Education, Exercise Science, and Recreation. Lippincott Williams & Wilkins; 2008.
  • Wasserstein RL, Lazar NA. ASA Statement on Statistical Significance and p-values. In: The Theory of Statistics in Psychology. Springer International Publishing; 2020:1–10. doi:10.1007/978-3-030-48043-1_1
  • Perezgonzalez JD, Frías-Navarro MD. Retract p <0.005 and propose using JASP, instead. F1000Res. 2017;6:2122. doi:10.12688/f1000research.13389.1
  • Goss-Sampson M. Statistical Analysis in JASP - a Guide for Students. JASP; 2019.
  • Quintana DS, Williams DR. Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP. BMC Psychiatry. 2018;18(1):178. doi:10.1186/s12888-018-1761-4
  • Wagenmakers EJ, Marsman M, Jamil T, et al. Bayesian inference for psychology. Part I: theoretical advantages and practical ramifications. Psychon Bull Rev. 2018;25(1):35–57. doi:10.3758/s13423-017-1343-3
  • Goss-Sampson M, van Doorn J, Wagenmakers EJ. Bayesian Inference in JASP: A Guide for Students. Jeffrey’s Amazing Statistics Program; 2020.
  • Kelter R. Bayesian alternatives to null hypothesis significance testing in biomedical research: a non-technical introduction to Bayesian inference with JASP. BMC Med Res Methodol. 2020;20(1). doi:10.1186/s12874-020-00980-6
  • van Doorn J, van den Bergh D, Böhm U, et al. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon Bull Rev. 2021;28(3):813–826. doi:10.3758/s13423-020-01798-5
  • Swinton PA, Hemingway BS, Saunders B, Gualano B, Dolan E. A statistical framework to interpret individual response to intervention: paving the way for personalized nutrition and exercise prescription. Front Nutr. 2018;5:1–14. doi:10.3389/fnut.2018.00041
  • da Cunha Nascimento D, Neto de S, Saraiva B, et al. Advancements and critical steps for statistical analyses in blood pressure response to resistance training in hypertensive older women: a methodological approach. Blood Press Monit. 2021;26(2):135–145. doi:10.1097/MBP.0000000000000505
  • laerd statistics. Two-way ANOVA using SPSS. Statistical Tutorials Software Guides Statistics; 2017. Available from: https://statistics.laerd.com/. Accessed January 14, 2022.
  • Stang A, Poole C, Kuss O. The ongoing tyranny of statistical significance testing in biomedical research. Eur J Epidemiol. 2010;25(4):225–230. doi:10.1007/s10654-010-9440-x
  • Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. doi:10.3758/BF03193146
  • Nakagawa S, Cuthill IC. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev. 2007;82(4):591–605. doi:10.1111/j.1469-185X.2007.00027.x
  • Beck TW. The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res. 2013;27(8):2323–2337. doi:10.1519/JSC.0b013e318278eea0
  • Ferrer RA, Ellis EM. Moving beyond categorization to understand affective influences on real world health decisions. Soc Personal Psychol Compass. 2019;13(11):1–16. doi:10.1111/spc3.12502
  • Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18(4):918–920. doi:10.1519/14403.1
  • Fey CF, Hu T, Delios A. the measurement and communication of effect sizes in management research. Manag Organ Rev. 2023;19(1):176–197. doi:10.1017/mor.2022.2
  • Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:1–12. doi:10.3389/fpsyg.2013.00863
  • Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb). 2021;31(1):27–53. doi:10.11613/BM.2021.010502
  • Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge; 1988. doi:10.4324/9780203771587
  • Sainani KL. A closer look at confidence intervals. PM&R. 2011;3(12):1134–1141. doi:10.1016/j.pmrj.2011.10.005
  • Schenker N, Gentleman JF. On judging the significance of differences by examining the overlap between confidence intervals. Am Stat. 2001;55(3):182–186. doi:10.1198/000313001317097960
  • Sainani KL. Clinical versus statistical significance. PM&R. 2012;4(6):442–445. doi:10.1016/j.pmrj.2012.04.014
  • Copay AG, Subach BR, Glassman SD, Polly DW, Schuler TC. Understanding the minimum clinically important difference: a review of concepts and methods. Spine J. 2007;7(5):541–546. doi:10.1016/j.spinee.2007.01.008
  • Wright JG. The minimal important difference: who’s to say what is important? J Clin Epidemiol. 1996;49(11):1221–1222. doi:10.1016/S0895-4356(96)00207-7
  • Vet De HCW, Ostelo RW, Terwee CB, et al. Minimally important change determined by a visual method integrating an anchor-based and a distribution-based approach. Qual Life Res. 2007;16:131–142. doi:10.1007/s11136-006-9109-9
  • Lawes CMM, Bennett DA, Feigin VL, Rodgers A. Blood pressure and stroke: an overview of published reviews. Stroke. 2004;35(3):776–785. doi:10.1161/01.STR.0000116869.64771.5A
  • Samsa G, Edelman D, Rothman ML, Williams GR, Lipscomb J, Matchar D. Determining clinically important differences in health status measures: a general approach with illustration to the health utilities index mark II. Pharmacoeconomics. 1999;15(2):141–155. doi:10.2165/00019053-199915020-00003
  • Leong DP, Teo KK, Rangarajan S, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386:9990):266–273. doi:10.1016/S0140-6736(14)62000-6
  • Stevens PJ, Syddall HE, Patel HP, Martin HJ, Cooper C, Aihie Sayer A. Is grip strength a good marker of physical performance among community-dwelling older people? J Nutr Health Aging. 2012;16(9):769–774. doi:10.1007/s12603-012-0388-2
  • Hopkins WG, Batterham AM. Error rates, decisive outcomes and publication bias with several inferential methods. Sports Med. 2016;46(10):1563–1573. doi:10.1007/s40279-016-0517-x
  • Lohse KR, Lohse KR, Sainani KL, et al. Systematic review of the use of “magnitude-based inference” in sports science and medicine. PLoS One. 2020;15(6 June):1–22. doi:10.1371/journal.pone.0235318
  • Sainani KL, Lohse KR, Jones PR, Vickers A. Magnitude-based Inference is not Bayesian and is not a valid method of inference. Scand J Med Sci Sports. 2019;29(9):1428–1436. doi:10.1111/sms.13491
  • Nevill AM, Williams AM, Boreham C, et al. Can we trust “Magnitude-based inference”? J Sports Sci. 2018;36(24):2769–2770. doi:10.1080/02640414.2018.1516004
  • Welsh AH, Knight EJ. “Magnitude-based Inference” A statistical review. Med Sci Sports Exerc. 2015;47(4):874–884. doi:10.1249/MSS.0000000000000451
  • Curran-Everett D. Magnitude-based inference: good idea but flawed approach. Med Sci Sports Exerc. 2018;50(10):2164–2165. doi:10.1249/MSS.0000000000001646
  • Kruschke JK. Bayesian analysis reporting guidelines. Nat Hum Behav. 2021;5(10):1282–1291. doi:10.1038/s41562-021-01177-7
  • Jeffreys H. Theory of Probability. 3rd ed. Clarendon Press - Oxford; 1998.
  • Blume JD, Greevy RA, Welty VF, Smith JR, Dupont WD. An Introduction to Second-Generation p-values. American Statistician. 2019;73(sup1):157–167. doi:10.1080/00031305.2018.1537893
  • Almeida da IS, Souza Andrade L, Sousa AMM, et al. The effect of mat pilates training combined with aerobic exercise versus mat pilates training alone on blood pressure in women with hypertension: a randomized controlled trial. Phys Ther. 2022:1–5. doi:10.1093/ptj/pzab258