103
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Non-Pharmacological Strategies for Managing Sarcopenia in Chronic Diseases

ORCID Icon, , ORCID Icon, ORCID Icon, &
Pages 827-841 | Received 19 Dec 2023, Accepted 02 May 2024, Published online: 15 May 2024

References

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39(4):412–423. doi:10.1093/ageing/afq034
  • Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–2646. doi:10.1016/S0140-6736(19)31138-9
  • Pérez-Baos S, Prieto-Potin I, Román-Blas JA, Sánchez-Pernaute O, Largo R, Herrero-Beaumont G. Mediators and patterns of muscle loss in chronic systemic inflammation. Front Physiol. 2018;9:409. doi:10.3389/fphys.2018.00409
  • Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi:10.1093/ageing/afy169
  • Cui H, Wang Z, Wu J, et al. Chinese expert consensus on prevention and intervention for elderly with sarcopenia (2023). AGING Med. 2023;6(2):104–115. doi:10.1002/agm2.12245
  • Jung HN, Jung CH, Hwang YC. Sarcopenia in youth. Metabolism. 2023;144:155557. doi:10.1016/j.metabol.2023.155557
  • Minniti G, Pescinini-Salzedas LM, Minniti GADS, et al. Organokines, sarcopenia, and metabolic repercussions: the vicious cycle and the interplay with exercise. Int J Mol Sci. 2022;23(21):13452. doi:10.3390/ijms232113452
  • Piętowska Z, Nowicka D, Szepietowski J. Can biological drugs diminish the risk of sarcopenia in psoriatic patients? A systematic review. Life. 2022;12(3):435. doi:10.3390/life12030435
  • Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–522. doi:10.1038/s41569-018-0064-2
  • Can B, Kara O, Kizilarslanoglu MC, et al. Serum markers of inflammation and oxidative stress in sarcopenia. Aging Clin Exp Res. 2017;29(4):745–752. doi:10.1007/s40520-016-0626-2
  • Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol. 2020;137:110964. doi:10.1016/j.exger.2020.110964
  • Massini G, Caldiroli L, Molinari P, Carminati FMI, Castellano G, Vettoretti S. Nutritional strategies to prevent muscle loss and sarcopenia in chronic kidney disease: what do we currently know?. Nutrients. 2023;15(14):3107. doi:10.3390/nu15143107
  • Bennett JL, Pratt AG, Dodds R, Sayer AA, Isaacs JD. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis. Nat Rev Rheumatol. 2023;19(4):239–251. doi:10.1038/s41584-023-00921-9
  • Supriya R, Singh KP, Gao Y, Gu Y, Baker JS. Effect of exercise on secondary sarcopenia: a comprehensive literature review. Biology. 2021;11(1):51. doi:10.3390/biology11010051
  • Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res. 2018;28(10):969–980. doi:10.1038/s41422-018-0078-7
  • Suzuki K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules. 2019;9(6):223. doi:10.3390/biom9060223
  • Hernandez H, Obamwonyi G, Harris-Love M. Physical therapy considerations for chronic kidney disease and secondary sarcopenia. J Funct Morphol Kinesiol. 2018;3(1):5. doi:10.3390/jfmk3010005
  • Chun HS, Lee M, Lee HA, et al. Association of physical activity with risk of liver fibrosis, sarcopenia, and cardiovascular disease in nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2023;21(2):358–369.e12. doi:10.1016/j.cgh.2021.12.043
  • Norikazu H. A home-based low-intensity resistance exercise programme with supervision for secondary sarcopenia in a patient with established rheumatoid arthritis A case report. Mod Rheumatol Case Rep. 2023;7(2):453–457. doi:10.1093/mrcr/rxad009
  • Onishi A, Torii M, Hidaka Y, et al. Efficacy of personalized exercise program on physical function in elderly patients with rheumatoid arthritis at high risk for sarcopenia: study protocol for a randomized controlled trial. BMC Musculoskelet Disord. 2023;24(1):280. doi:10.1186/s12891-023-06185-4
  • Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):58–74. doi:10.1038/nrd4467
  • Marzetti E, Calvani R; on behalf of the SPRINTT Consortium. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res. 2017;29(1):35–42. doi:10.1007/s40520-016-0705-4
  • Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): screening Diagnosis and Management. J Nutr Health Aging. 2018;22(10):1148–1161. doi:10.1007/s12603-018-1139-9
  • Tsuzuku S, Kajioka T, Sakakibara H, Shimaoka K. Slow movement resistance training using body weight improves muscle mass in the elderly: a randomized controlled trial. Scand J Med Sci Sports. 2018;28(4):1339–1344. doi:10.1111/sms.13039
  • Mcleod JC, Stokes T, Phillips SM. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front Physiol. 2019;10:645. doi:10.3389/fphys.2019.00645
  • Do Nascimento MA, Gerage AM, Januário RS, et al. Resistance training with dietary intake maintenance increases strength without altering body composition in older women. J Sports Med Phys Fitness. 2018;58(4). doi:10.23736/S0022-4707.16.06730-X
  • Cebrià I, Iranzo MÀ, Balasch-Bernat M, MÁ T-C, Balasch-Parisi S. Effects of resistance training of peripheral muscles versus respiratory muscles in older adults with sarcopenia who are institutionalized: a randomized controlled trial. J Aging Phys Act. 2018;26(4):637–646. doi:10.1123/japa.2017-0268
  • McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance exercise, aging, disuse, and muscle protein metabolism. In: Terjung R, editor. Comprehensive Physiology. 1st ed. Wiley; 2021:2249–2278. doi:10.1002/cphy.c200029
  • Stoever K, Heber A, Eichberg S, Brixius K. Influences of resistance training on physical function in older, obese men and women with sarcopenia. J Geriatr Phys Ther. 2018;41(1):20–27. doi:10.1519/JPT.0000000000000105
  • Cunha PM, Ribeiro AS, Tomeleri CM, et al. The effects of resistance training volume on osteosarcopenic obesity in older women. J Sports Sci. 2018;36(14):1564–1571. doi:10.1080/02640414.2017.1403413
  • Nomura T, Kawae T, Kataoka H, Ikeda Y. Assessment of lower extremity muscle mass, muscle strength, and exercise therapy in elderly patients with diabetes mellitus. Environ Health Prev Med. 2018;23(1):20. doi:10.1186/s12199-018-0710-7
  • Lim ST, Kang S. Exercise therapy for sarcopenia and diabetes. World J Diabetes. 2023;14(5):565–572. doi:10.4239/wjd.v14.i5.565
  • Chien YH, Tsai CJ, Wang DC, Chuang PH, Lin HT. Effects of 12-week progressive sandbag exercise training on glycemic control and muscle strength in patients with type 2 diabetes mellitus combined with possible sarcopenia. Int J Environ Res Public Health. 2022;19(22):15009. doi:10.3390/ijerph192215009
  • Liao CD, Tsauo JY, Chiu YS, Ku JW, Huang SW, Liou TH. Effects of elastic resistance exercise after total knee replacement on muscle mass and physical function in elderly women with osteoarthritis: a randomized controlled trial. Am J Phys Med Rehabil. 2020;99(5):381–389. doi:10.1097/PHM.0000000000001344
  • Cao A, Ferrucci LM, Caan BJ, Irwin ML. Effect of exercise on sarcopenia among cancer survivors: a systematic review. Cancers. 2022;14(3):786. doi:10.3390/cancers14030786
  • Park SE, Kim DH, Kim DK, et al. Feasibility and safety of exercise during chemotherapy in people with gastrointestinal cancers: a pilot study. Support Care Cancer. 2023;31(10):561. doi:10.1007/s00520-023-08017-6
  • Jee YS. Exercise rehabilitation strategy for the prevention of sarcopenia in cancer populations: 8th in a series of scientific evidence. J Exerc Rehabil. 2022;18(2):79–80. doi:10.12965/jer.2244124.062
  • Lopez P, Newton RU, Taaffe DR, Winters-Stone K, Galvão DA, Buffart LM. Moderators of resistance-based exercise programs’ effect on sarcopenia-related measures in men with prostate cancer previously or currently undergoing androgen deprivation therapy: an individual patient data meta-analysis. J Geriatr Oncol. 2023;14(5):101535. doi:10.1016/j.jgo.2023.101535
  • Koeppel M, Mathis K, Schmitz KH, Wiskemann J. Muscle hypertrophy in cancer patients and survivors via strength training. A meta-analysis and meta-regression. Crit Rev Oncol Hematol. 2021;163:103371. doi:10.1016/j.critrevonc.2021.103371
  • Adams SC, Segal RJ, McKenzie DC, et al. Impact of resistance and aerobic exercise on sarcopenia and dynapenia in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. Breast Cancer Res Treat. 2016;158(3):497–507. doi:10.1007/s10549-016-3900-2
  • Huffman KM, Andonian BJ, Abraham DM, et al. Exercise protects against cardiac and skeletal muscle dysfunction in a mouse model of inflammatory arthritis. J Appl Physiol. 2021;130(3):853–864. doi:10.1152/japplphysiol.00576.2020
  • Vilela TC, Effting PS, Dos Santos Pedroso G, et al. Aerobic and strength training induce changes in oxidative stress parameters and elicit modifications of various cellular components in skeletal muscle of aged rats. Exp Gerontol. 2018;106:21–27. doi:10.1016/j.exger.2018.02.014
  • Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: a systematic review and network meta‐analysis. J Cachexia, Sarcopenia Muscle. 2023;14(3):1199–1211. doi:10.1002/jcsm.13225
  • Gao S, Yu L, Yi G, Li T, Chen Z, Ding J. Exercise intervention as a therapy in patients with diabetes mellitus and sarcopenia: a meta-analysis. Diabetes Ther. 2022;13(7):1311–1325. doi:10.1007/s13300-022-01275-3
  • Kobayashi Y, Long J, Dan S, et al. Strength training is more effective than aerobic exercise for improving glycaemic control and body composition in people with normal-weight type 2 diabetes: a randomised controlled trial. Diabetologia. 2023;66(10):1897–1907. doi:10.1007/s00125-023-05958-9
  • Park J, Bae J, Lee J. Complex exercise improves anti-inflammatory and anabolic effects in osteoarthritis-induced sarcopenia in elderly women. Healthcare. 2021;9(6):711. doi:10.3390/healthcare9060711
  • Kimura T, Okamura T, Iwai K, et al. Japanese radio calisthenics prevents the reduction of skeletal muscle mass volume in people with type 2 diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001027. doi:10.1136/bmjdrc-2019-001027
  • Colletto M, Rodriguez N. Routine yoga practice impacts whole body protein utilization in healthy women. J Aging Phys Act. 2018;26(1):68–74. doi:10.1123/japa.2016-0085
  • Denham‐Jones L, Gaskell L, Spence N, Pigott T. A systematic review of the effectiveness of yoga on pain, physical function, and quality of life in older adults with chronic musculoskeletal conditions. Musculoskeletal Care. 2022;20(1):47–73. doi:10.1002/msc.1576
  • Kemmler W, Kohl M, Jakob F, Engelke K, Von Stengel S. Effects of high intensity dynamic resistance exercise and whey protein supplements on osteosarcopenia in older men with low bone and muscle mass. final results of the randomized controlled FrOST study. Nutrients. 2020;12(8):2341. doi:10.3390/nu12082341
  • Aziz T, Khan AA, Tzora A, Voidarou C, Skoufos I. Dietary implications of the bidirectional relationship between the gut microflora and inflammatory diseases with special emphasis on irritable bowel disease: current and future perspective. Nutrients. 2023;15(13):2956. doi:10.3390/nu15132956
  • Kuzuya M. Nutritional management of sarcopenia and frailty—shift from metabolic syndrome to frailty: nutritional management of sarcopenia and frailty (SY(T4)1). J Nutr Sci Vitaminol. 2022;68:S67–S69. doi:10.3177/jnsv.68.S67
  • Isanejad M, Sirola J, Mursu J, et al. Association of the Baltic Sea and Mediterranean diets with indices of sarcopenia in elderly women, OSPTRE-FPS study. Eur J Nutr. 2018;57(4):1435–1448. doi:10.1007/s00394-017-1422-2
  • Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab. 2018;15(1):72. doi:10.1186/s12986-018-0306-7
  • Ganapathy A, Nieves JW. Nutrition and sarcopenia—what do we know?. Nutrients. 2020;12(6):1755. doi:10.3390/nu12061755
  • Beaudry KM, Devries MC. Nutritional strategies to combat type 2 diabetes in aging adults: the importance of protein. Front Nutr. 2019;6:138. doi:10.3389/fnut.2019.00138
  • Tessier AJ, Chevalier S. An update on protein, leucine, omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline. Nutrients. 2018;10(8):1099. doi:10.3390/nu10081099
  • Otsuka Y, Iidaka T, Horii C, et al. Dietary intake of vitamin E and fats associated with sarcopenia in community-dwelling older Japanese people: a cross-sectional study from the fifth survey of the ROAD study. Nutrients. 2021;13(5):1730. doi:10.3390/nu13051730
  • Liu S, Zhang L, Li S. Advances in nutritional supplementation for sarcopenia management. Front Nutr. 2023;10:1189522. doi:10.3389/fnut.2023.1189522
  • Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia?. Clin Nutr. 2018;37(4):1121–1132. doi:10.1016/j.clnu.2017.08.016
  • Nasimi N, Sohrabi Z, Nunes EA, et al. Whey protein supplementation with or without vitamin D on sarcopenia-related measures: a systematic review and meta-analysis. Adv Nutr. 2023;14(4):762–773. doi:10.1016/j.advnut.2023.05.011
  • Björkman MP, Suominen MH, Kautiainen H, et al. Effect of protein supplementation on physical performance in older people with sarcopenia–A randomized controlled trial. J Am Med Dir Assoc. 2020;21(2):226–232.e1. doi:10.1016/j.jamda.2019.09.006
  • Barreto Silva MI, Picard K. Sarcopenia and sarcopenic obesity in chronic kidney disease: update on prevalence, outcomes, risk factors and nutrition treatment. Curr Opin Clin Nutr Metab Care. 2022;25(6):371–377. doi:10.1097/MCO.0000000000000871
  • Prado CM, Purcell SA, Laviano A. Nutrition interventions to treat low muscle mass in cancer. J Cachexia Sarcopenia Muscle. 2020;11(2):366–380. doi:10.1002/jcsm.12525
  • Mazzuca F, Roberto M, Arrivi G, et al. Clinical impact of highly purified, whey proteins in patients affected with colorectal cancer undergoing chemotherapy: preliminary results of a placebo-controlled study. Integr Cancer Ther. 2019;18:153473541986692. doi:10.1177/1534735419866920
  • Camajani E, Persichetti A, Watanabe M, et al. Whey protein, L-leucine and vitamin D supplementation for preserving lean mass during a low-calorie diet in sarcopenic obese women. Nutrients. 2022;14(9):1884. doi:10.3390/nu14091884
  • Nicastro H, Artioli GG, Dos Santos Costa A, et al. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids. 2011;40(2):287–300. doi:10.1007/s00726-010-0636-x
  • Guo Y, Fu X, Hu Q, Chen L, Zuo H. The effect of leucine supplementation on sarcopenia-related measures in older adults: a systematic review and meta-analysis of 17 randomized controlled trials. Front Nutr. 2022;9:929891. doi:10.3389/fnut.2022.929891
  • Martínez-Arnau FM, Fonfría-Vivas R, Cauli O. Beneficial effects of leucine supplementation on criteria for sarcopenia: a systematic review. Nutrients. 2019;11(10):2504. doi:10.3390/nu11102504
  • Leenders M, Van Loon LJ. Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr Rev. 2011;69(11):675–689. doi:10.1111/j.1753-4887.2011.00443.x
  • Herrera-Martínez AD, León Idougourram S, Muñoz Jiménez C, et al. Standard hypercaloric, hyperproteic vs. leucine-enriched oral supplements in patients with cancer-induced sarcopenia, a randomized clinical trial. Nutrients. 2023;15(12):2726. doi:10.3390/nu15122726
  • Caballero-García A, Pascual-Fernández J, Noriega-González DC, et al. L-Citrulline supplementation and exercise in the management of sarcopenia. Nutrients. 2021;13(9):3133. doi:10.3390/nu13093133
  • Teixeira FJ, Matias CN, Monteiro CP, Howell SL. Effects of alpha-hydroxy-isocaproic acid upon body composition in a type I diabetic patient with muscle atrophy – A case study. Yale J Biol Med. 2018;91:355.
  • Cruz-Jentoft A. Beta-Hydroxy-Beta-Methyl Butyrate (HMB): from experimental data to clinical evidence in sarcopenia. Curr Protein Pept Sci. 2018;19(7):668–672. doi:10.2174/1389203718666170529105026
  • Coleman MF, Liu KA, Pfeil AJ, et al. β-Hydroxy-β-Methylbutyrate supplementation promotes antitumor immunity in an obesity responsive mouse model of pancreatic ductal adenocarcinoma. Cancers. 2021;13(24):6359. doi:10.3390/cancers13246359
  • Kitajima Y, Takahashi H, Akiyama T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol. 2018;53(3):427–437. doi:10.1007/s00535-017-1370-x
  • Okamura T, Hashimoto Y, Miki A, et al. Reduced dietary omega-3 fatty acids intake is associated with sarcopenia in elderly patients with type 2 diabetes: a cross-sectional study of KAMOGAWA-DM cohort study. J Clin Biochem Nutr. 2020;66(3):233–237. doi:10.3164/jcbn.19-85
  • Witard OC, Combet E, Gray SR. Long-chain n −3 fatty acids as an essential link between musculoskeletal and cardio-metabolic health in older adults. Proc Nutr Soc. 2020;79(1):47–55. doi:10.1017/S0029665119000922
  • Di Girolamo FG, Situlin R, Mazzucco S, Valentini R, Toigo G, Biolo G. Omega-3 fatty acids and protein metabolism: enhancement of anabolic interventions for sarcopenia. Curr Opin Clin Nutr Metab Care. 2014;17(2):145–150. doi:10.1097/MCO.0000000000000032
  • Gray SR, Mittendorfer B. Fish oil-derived n-3 polyunsaturated fatty acids for the prevention and treatment of sarcopenia. Curr Opin Clin Nutr Metab Care. 2018;21(2):104–109. doi:10.1097/MCO.0000000000000441
  • Rondanelli M, Rigon C, Perna S, et al. Novel insights on intake of fish and prevention of sarcopenia: all reasons for an adequate consumption. Nutrients. 2020;12(2):307. doi:10.3390/nu12020307
  • Lanchais K, Capel F, Tournadre A. Could omega 3 fatty acids preserve muscle health in rheumatoid arthritis?. Nutrients. 2020;12(1):223. doi:10.3390/nu12010223
  • Bird JK, Troesch B, Warnke I, Calder PC. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in sarcopenia: a scoping systematic review and meta-analysis. Clin Nutr ESPEN. 2021;46:73–86. doi:10.1016/j.clnesp.2021.10.011
  • Rolland Y, Barreto PDS, Maltais M, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain lifestyle intervention on muscle strength in older adults: secondary analysis of the Multidomain Alzheimer Preventive Trial (MAPT). Nutrients. 2019;11(8):1931. doi:10.3390/nu11081931
  • Yang A, Lv Q, Chen F, et al. The effect of vitamin D on sarcopenia depends on the level of physical activity in older adults. J Cachexia Sarcopenia Muscle. 2020;11(3):678–689. doi:10.1002/jcsm.12545
  • Okubo T, Atsukawa M, Tsubota A, et al. Effect of vitamin D supplementation on skeletal muscle volume and strength in patients with decompensated liver cirrhosis undergoing branched chain amino acids supplementation: a prospective, randomized, controlled pilot trial. Nutrients. 2021;13(6):1874. doi:10.3390/nu13061874
  • Bode LE, McClester Brown M, Hawes EM. Vitamin D supplementation for extraskeletal indications in older persons. J Am Med Dir Assoc. 2020;21(2):164–171. doi:10.1016/j.jamda.2019.09.021
  • Cheng SH, Chen KH, Chen C, Chu WC, Kang YN. The optimal strategy of vitamin D for sarcopenia: a network meta-analysis of randomized controlled trials. Nutrients. 2021;13(10):3589. doi:10.3390/nu13103589
  • Prokopidis K, Giannos P, Katsikas Triantafyllidis K, et al. Effect of vitamin D monotherapy on indices of sarcopenia in community‐dwelling older adults: a systematic review and meta‐analysis. J Cachexia Sarcopenia Muscle. 2022;13(3):1642–1652. doi:10.1002/jcsm.12976
  • Negro M, Perna S, Spadaccini D, et al. Effects of 12 Weeks of Essential Amino Acids (EAA)-based multi-ingredient nutritional supplementation on muscle mass, muscle strength, muscle power and fatigue in healthy elderly subjects: a randomized controlled double-blind study. J Nutr Health Aging. 2019;23(5):414–424. doi:10.1007/s12603-019-1163-4
  • Cereda E, Pisati R, Rondanelli M, Caccialanza R. Whey protein, leucine- and vitamin-D-enriched oral nutritional supplementation for the treatment of sarcopenia. Nutrients. 2022;14(7):1524. doi:10.3390/nu14071524
  • Cochet C, Belloni G, Buondonno I, Chiara F, D’Amelio P. The role of nutrition in the treatment of sarcopenia in old patients: from restoration of mitochondrial activity to improvement of muscle performance, a systematic review. Nutrients. 2023;15(17):3703. doi:10.3390/nu15173703
  • Lin CC, Shih MH, Chen CD, Yeh SL. Effects of adequate dietary protein with whey protein, leucine, and vitamin D supplementation on sarcopenia in older adults: an open-label, parallel-group study. Clin Nutr. 2021;40(3):1323–1329. doi:10.1016/j.clnu.2020.08.017
  • Rondanelli M, Cereda E, Klersy C, et al. Improving rehabilitation in sarcopenia: a randomized‐controlled trial utilizing a muscle‐targeted food for special medical purposes. J Cachexia Sarcopenia Muscle. 2020;11(6):1535–1547. doi:10.1002/jcsm.12532
  • Martin-Cantero A, Reijnierse EM, Gill BMT, Maier AB. Factors influencing the efficacy of nutritional interventions on muscle mass in older adults: a systematic review and meta-analysis. Nutr Rev. 2021;79(3):315–330. doi:10.1093/nutrit/nuaa064
  • Bo Y, Liu C, Ji Z, et al. A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: a double-blind randomized controlled trial. Clin Nutr. 2019;38(1):159–164. doi:10.1016/j.clnu.2017.12.020
  • Nasimi N, Sohrabi Z, Dabbaghmanesh MH, et al. A novel fortified dairy product and sarcopenia measures in sarcopenic older adults: a double-blind randomized controlled trial. J Am Med Dir Assoc. 2021;22(4):809–815. doi:10.1016/j.jamda.2020.08.035
  • Chang MC, Choo YJ. Effects of whey protein, leucine, and vitamin D supplementation in patients with sarcopenia: a systematic review and meta-analysis. Nutrients. 2023;15(3):521. doi:10.3390/nu15030521
  • Kang Y, Kim N, Choi YJ, et al. Leucine-enriched protein supplementation increases lean body mass in healthy Korean adults aged 50 years and older: a randomized, double-blind, placebo-controlled trial. Nutrients. 2020;12(6):1816. doi:10.3390/nu12061816
  • Cruz-Jentoft AJ, Romero-Yuste S, Chamizo Carmona E, Nolla JM. Sarcopenia, immune-mediated rheumatic diseases, and nutritional interventions. Aging Clin Exp Res. 2021;33(11):2929–2939. doi:10.1007/s40520-021-01800-7
  • Luk H-Y, Appell C, Chyu M-C, et al. Impacts of green tea on joint and skeletal muscle health: prospects of translational nutrition. Antioxidants. 2020;9(11):1050. doi:10.3390/antiox9111050
  • Karim A, Muhammad T, Shahid Iqbal M, Qaisar R. A multistrain probiotic improves handgrip strength and functional capacity in patients with COPD: a randomized controlled trial. Arch Gerontol Geriatr. 2022;102:104721. doi:10.1016/j.archger.2022.104721
  • Ali AM, Kunugi H. Apitherapy for age-related skeletal muscle dysfunction (sarcopenia): a review on the effects of royal jelly, propolis, and bee pollen. Foods. 2020;9(10):1362. doi:10.3390/foods9101362
  • Besora-Moreno M, Llauradó E, Valls RM, Tarro L, Pedret A, Solà R. Antioxidant-rich foods, antioxidant supplements, and sarcopenia in old-young adults ≥55 years old: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin Nutr. 2022;41(10):2308–2324. doi:10.1016/j.clnu.2022.07.035
  • Hamstra SI, Roy BD, Tiidus P, et al. Beyond its psychiatric use: the benefits of low-dose lithium supplementation. Curr Neuropharmacol. 2023;21(4):891–910. doi:10.2174/1570159X20666220302151224
  • McKendry J, Currier BS, Lim C, Mcleod JC, Thomas ACQ, Phillips SM. Nutritional supplements to support resistance exercise in countering the sarcopenia of aging. Nutrients. 2020;12(7):2057. doi:10.3390/nu12072057
  • Oliveira CLP, Dionne IJ, Prado CM. Are Canadian protein and physical activity guidelines optimal for sarcopenia prevention in older adults?. Appl Physiol Nutr Metab. 2018;43(12):1215–1223. doi:10.1139/apnm-2018-0141
  • Sgrò P, Sansone M, Sansone A, et al. Physical exercise, nutrition and hormones: three pillars to fight sarcopenia. Aging Male. 2019;22(2):75–88. doi:10.1080/13685538.2018.1439004
  • Herrema AL, Westerman MJ, Van Dongen EJI, Kudla U, Veltkamp M. Combined protein-rich diet with resistance exercise intervention to counteract sarcopenia: a qualitative study on drivers and barriers of compliance. J Aging Phys Act. 2018;26(1):106–113. doi:10.1123/japa.2017-0126
  • Wright J, Baldwin C. Oral nutritional support with or without exercise in the management of malnutrition in nutritionally vulnerable older people: a systematic review and meta-analysis. Clin Nutr. 2018;37(6):1879–1891. doi:10.1016/j.clnu.2017.09.004
  • Voulgaridou G, Papadopoulou SD, Spanoudaki M, et al. Increasing muscle mass in elders through diet and exercise: a literature review of recent RCTs. Foods. 2023;12(6):1218. doi:10.3390/foods12061218
  • Antoun S, Raynard B. Muscle protein anabolism in advanced cancer patients: response to protein and amino acids support, and to physical activity. Ann Oncol. 2018;29:ii10–ii17. doi:10.1093/annonc/mdx809
  • Trouwborst I, Verreijen A, Memelink R, et al. Exercise and nutrition strategies to counteract sarcopenic obesity. Nutrients. 2018;10(5):605. doi:10.3390/nu10050605
  • Papadopoulou SK, Papadimitriou K, Voulgaridou G, et al. Exercise and nutrition impact on osteoporosis and sarcopenia—the incidence of osteosarcopenia: a narrative review. Nutrients. 2021;13(12):4499. doi:10.3390/nu13124499
  • Dhillon RJS, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med. 2017;33(1):17–26. doi:10.1016/j.cger.2016.08.002
  • McGlory C, Van Vliet S, Stokes T, Mittendorfer B, Phillips SM. The impact of exercise and nutrition on the regulation of skeletal muscle mass. J Physiol. 2019;597(5):1251–1258. doi:10.1113/JP275443
  • Song Z, Pan T, Tong X, Yang Y, Zhang Z. The effects of nutritional supplementation on older sarcopenic individuals who engage in resistance training: a meta-analysis. Front Nutr. 2023;10:1109789. doi:10.3389/fnut.2023.1109789
  • Hernández-Lepe MA, Miranda-Gil MI, Valbuena-Gregorio E, Olivas-Aguirre FJ. Exercise programs combined with diet supplementation improve body composition and physical function in older adults with sarcopenia: a systematic review. Nutrients. 2023;15(8):1998. doi:10.3390/nu15081998
  • Fairfield WD, Minton DM, Elliehausen CJ, et al. Small-scale randomized controlled trial to explore the impact of β-hydroxy-β-methylbutyrate plus vitamin D3 on skeletal muscle health in middle aged women. Nutrients. 2022;14(21):4674. doi:10.3390/nu14214674
  • Orsatti FL, Maestá N, De Oliveira EP, et al. Adding soy protein to milk enhances the effect of resistance training on muscle strength in postmenopausal women. J Diet Suppl. 2018;15(2):140–152. doi:10.1080/19390211.2017.1330794
  • Nilsson MI, Mikhail A, Lan L, et al. A five-ingredient nutritional supplement and home-based resistance exercise improve lean mass and strength in free-living elderly. Nutrients. 2020;12(8):2391. doi:10.3390/nu12082391
  • Chang KV, Wu WT, Huang KC, Han DS. Effectiveness of early versus delayed exercise and nutritional intervention on segmental body composition of sarcopenic elders - A randomized controlled trial. Clin Nutr. 2021;40(3):1052–1059. doi:10.1016/j.clnu.2020.06.037
  • Nabuco H, Tomeleri C, Sugihara Junior P, et al. Effects of whey protein supplementation pre- or post-resistance training on muscle mass, muscular strength, and functional capacity in pre-conditioned older women: a randomized clinical trial. Nutrients. 2018;10(5):563. doi:10.3390/nu10050563
  • De Sousa MV, Da Silva Soares DB, Caraça ER, Cardoso R. Dietary protein and exercise for preservation of lean mass and perspectives on type 2 diabetes prevention. Exp Biol Med. 2019;244(12):992–1004. doi:10.1177/1535370219861910
  • Hashimoto Y, Takahashi F, Okamura T, Hamaguchi M, Fukui M. Diet, exercise, and pharmacotherapy for sarcopenia in people with diabetes. Metabolism. 2023;144:155585. doi:10.1016/j.metabol.2023.155585
  • Tamura Y, Omura T, Toyoshima K, Araki A. Nutrition management in older adults with diabetes: a review on the importance of shifting prevention strategies from metabolic syndrome to frailty. Nutrients. 2020;12(11):3367. doi:10.3390/nu12113367
  • Argyropoulou D, Geladas ND, Nomikos T, Paschalis V. Exercise and nutrition strategies for combating sarcopenia and type 2 diabetes mellitus in older adults. J Funct Morphol Kinesiol. 2022;7(2):48. doi:10.3390/jfmk7020048
  • Yamamoto Y, Nagai Y, Kawanabe S, et al. Effects of resistance training using elastic bands on muscle strength with or without a leucine supplement for 48 weeks in elderly patients with type 2 diabetes. Endocr J. 2021;68(3):291–298. doi:10.1507/endocrj.EJ20-0550
  • Saitoh M, Ebner N, Von Haehling S, Anker SD, Springer J. Therapeutic considerations of sarcopenia in heart failure patients. Expert Rev Cardiovasc Ther. 2018;16(2):133–142. doi:10.1080/14779072.2018.1424542
  • Liao CD, Wu YT, Tsauo JY, et al. Effects of protein supplementation combined with exercise training on muscle mass and function in older adults with lower-extremity osteoarthritis: a systematic review and meta-analysis of randomized trials. Nutrients. 2020;12(8):2422. doi:10.3390/nu12082422
  • Liao CD, Huang SW, Chen HC, Huang YY, Liou TH, Lin CL. Effects of protein supplementation combined with resistance exercise training on walking speed recovery in older adults with knee osteoarthritis and sarcopenia. Nutrients. 2023;15(7):1552. doi:10.3390/nu15071552
  • Zhao J, Huang Y, Yu X. Effects of nutritional supplement and resistance training for sarcopenia in patients with inflammatory bowel disease: a randomized controlled trial. Medicine. 2022;101(34):e30386. doi:10.1097/MD.0000000000030386
  • Ispoglou T, Ferentinos P, Prokopidis K, et al. Exploring the impact of exercise and essential amino acid plus cholecalciferol supplementation on physical fitness and body composition in multiple sclerosis: a case study. Clin Case Rep. 2023;11(6):e7548. doi:10.1002/ccr3.7548
  • Rivadeneyra J, Verhagen O, Bartulos M, et al. The impact of dietary intake and physical activity on body composition in parkinson’s disease. Mov Disord Clin Pract. 2021;8(6):896–903. doi:10.1002/mdc3.13263
  • Liu X, Xu X, Cheung DST, et al.. The effects of exercise with or without dietary advice on muscle mass, muscle strength, and physical functioning among older cancer survivors: a meta-analysis of randomized controlled trials. J Cancer Surviv. 2023;2. doi:10.1007/s11764-023-01396-z
  • Rolland Y, Dray C, Vellas B, Barreto PDS. Current and investigational medications for the treatment of sarcopenia. Metabolism. 2023;155597. doi:10.1016/j.metabol.2023.155597
  • Ye J, Simpson MW, Liu Y, et al. The effects of baduanjin qigong on postural stability, proprioception, and symptoms of patients with knee osteoarthritis: a randomized controlled trial. Front Med. 2020;6:307. doi:10.3389/fmed.2019.00307
  • Guo L, Liu Z, Yuan W. The effect of Baduanjin on the balancing ability of older adults: a systematic review and meta-analysis. Front Med. 2022;9:995577. doi:10.3389/fmed.2022.995577
  • Zou L, Yeung A, Quan X, Boyden S, Wang H. A systematic review and meta-analysis of mindfulness-based (Baduanjin) exercise for alleviating musculoskeletal pain and improving sleep quality in people with chronic diseases. Int J Environ Res Public Health. 2018;15(2):206. doi:10.3390/ijerph15020206
  • Yue S, Zhang J, Li J, et al. A study protocol for a randomized controlled trial to assess the efficacy of Baduanjin exercise on older adults with sarcopenia in China. BMC Complement Med Ther. 2022;22(1):298. doi:10.1186/s12906-022-03778-9
  • Guo C, Ma Y, Liu S, et al. Traditional Chinese medicine and sarcopenia: a systematic review. Front Aging Neurosci. 2022;14:872233. doi:10.3389/fnagi.2022.872233
  • Niu K, Liu YL, Yang F, Wang Y, Zhou XZ, Qu Q. Efficacy of traditional Chinese exercise for sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Front Neurosci. 2022;16:1094054. doi:10.3389/fnins.2022.1094054
  • Yuen M, Ouyang HX, Miller T, Pang MYC. Baduanjin qigong improves balance, leg strength, and mobility in individuals with chronic stroke: a randomized controlled study. Neurorehabil Neural Repair. 2021;35(5):444–456. doi:10.1177/15459683211005020
  • Huang CY, Mayer PK, Wu MY, Liu DH, Wu PC, Yen HR. The effect of Tai Chi in elderly individuals with sarcopenia and frailty: a systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev. 2022;82:101747. doi:10.1016/j.arr.2022.101747
  • Wang C, Liang J, Si Y, Li Z, Lu A. The effectiveness of traditional Chinese medicine-based exercise on physical performance, balance and muscle strength among older adults: a systematic review with meta-analysis. Aging Clin Exp Res. 2021;34(4):725–740. doi:10.1007/s40520-021-01964-2
  • Wei M, Meng D, Guo H, et al. Hybrid exercise program for sarcopenia in older adults: the effectiveness of explainable artificial intelligence-based clinical assistance in assessing skeletal muscle area. Int J Environ Res Public Health. 2022;19(16):9952. doi:10.3390/ijerph19169952
  • Liu X, Wu J, Tang J, et al.. Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline. J Cachexia Sarcopenia Muscle. 2023:13313. doi:10.1002/jcsm.13313
  • Liu C, Cheung W, Li J, et al. Understanding the gut microbiota and sarcopenia: a systematic review. J Cachexia Sarcopenia Muscle. 2021;12(6):1393–1407. doi:10.1002/jcsm.12784
  • Chen L, Chang S, Chang H, et al. Probiotic supplementation attenuates age‐related sarcopenia via the gut–muscle axis in SAMP8 mice. J Cachexia Sarcopenia Muscle. 2022;13(1):515–531. doi:10.1002/jcsm.12849
  • Zhang L, Weng CS. Advance in whole-body vibration in aging adults (review). Zhongguo Kangfu Lilun Yu Shijian. 2015;21(2):163–167.
  • Zhang X, Xie W, Chen L, et al. Blood flow restriction training for the intervention of sarcopenia: current stage and future perspective. Front Med. 2022;9:894996. doi:10.3389/fmed.2022.894996
  • Scarpelli MC, Bergamasco JGA, Arruda EADB, Cook SB, Libardi CA. Resistance training with partial blood flow restriction in a 99-year-old individual: a case report. Front Sports Act Living. 2021;3:671764. doi:10.3389/fspor.2021.671764
  • Puppa MJ, Murphy EA, Fayad R, Hand GA, Carson JA. Cachectic skeletal muscle response to a novel bout of low-frequency stimulation. J Appl Physiol. 2014;116(8):1078–1087. doi:10.1152/japplphysiol.01270.2013
  • Venugobal S, Tai YK, Goh J, et al. Brief, weekly magnetic muscle therapy improves mobility and lean body mass in older adults: a Southeast Asia community case study. Aging. 2023;15(6):1768–1790. doi:10.18632/aging.204597