324
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Machine Learning Algorithm to Estimate Distant Breast Cancer Recurrence at the Population Level with Administrative Data

ORCID Icon, , , , , , , , , , , ORCID Icon, , & show all
Pages 559-568 | Received 03 Dec 2022, Accepted 01 Apr 2023, Published online: 05 May 2023

References

  • Gourgou-Bourgade S, Cameron D, Poortmans P, et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann Oncol. 2015;26(5):873–879. doi:10.1093/annonc/mdv106
  • Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–247. doi:10.1016/j.ejca.2008.10.026
  • Warren JL, Yabroff KR. Challenges and opportunities in measuring cancer recurrence in the United States. J Natl Cancer Inst. 2015;107:djv134–djv134. doi:10.1093/jnci/djv134
  • Negoita S, Ramirez-Pena E. Prevention of late recurrence: an increasingly important target for breast cancer research and control. J Natl Cancer Inst. 2021. doi:10.1093/JNCI/DJAB203
  • Izci H, Tambuyzer T, Tuand K, et al. A systematic review of estimating breast cancer recurrence at the population level with administrative data. J Natl Cancer Inst. 2020;112:979–988. doi:10.1093/jnci/djaa050
  • Ritzwoller DP, Hassett MJ, Uno H, et al. Development, validation, and dissemination of a breast cancer recurrence detection and timing informatics algorithm. J Natl Cancer Inst. 2018;110:273–281. doi:10.1093/jnci/djx200
  • A’mar T, Beatty JD, Fedorenko C, et al. Incorporating breast cancer recurrence events into population-based cancer registries using medical claims: cohort study. JMIR Cancer. 2020;6(2):1–10.
  • Cairncrossh ZF, Nelson G, Shack L, Metcalfe A. Validation in Alberta of an administrative data algorithm to identify cancer recurrence. Curr Oncol. 2020;27(3):e343–e346. doi:10.3747/co.27.5861
  • Lambert P, Pitz M, Singh H, Decker K. Evaluation of algorithms using administrative health and structured electronic medical record data to determine breast and colorectal cancer recurrence in a Canadian province: using algorithms to determine breast and colorectal cancer recurrence. BMC Cancer. 2021;21(1):1–10. doi:10.1186/s12885-021-08526-9
  • Pedersen RN, Öztürk B, Mellemkjær L, et al. Validation of an algorithm to ascertain late breast cancer recurrence using Danish medical registries. Clin Epidemiol. 2020;12:1083–1093. doi:10.2147/CLEP.S269962
  • Rasmussen LA, Jensen H, Virgilsen LF, et al. A validated algorithm for register-based identification of patients with recurrence of breast cancer-Based on Danish Breast Cancer Group (DBCG) data. CANCER Epidemiol. 2019;59:129–134. doi:10.1016/j.canep.2019.01.016
  • Valachis A, Carlqvist P, Szilcz M, et al. Use of classifiers to optimise the identification and characterisation of metastatic breast cancer in a nationwide administrative registry. Acta Oncol. 2021;60(12):1604–1610. doi:10.1080/0284186X.2021.1979645
  • Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–1931. doi:10.1093/eurheartj/ehu207
  • Het Intermutualistisch Agentschap [The Intermutualistic Agency] (IMA) L’Agence InterMutualiste (AIM). https://ima-aim.be/.
  • Technische Cel voor het beheer van de MZG-MFG data [Technical cel for management of MZG-MFG data]- La Cellule Technique pour la gestion des données RHM-RFM. https://tct.fgov.be/.
  • CBSS - Crossroads Bank for Social Security. Available from: https://www.ksz-bcss.fgov.be/nl/documents-list. Accessed April 28, 2023.
  • Agence pour une Vie de Qualité [Walloon Agency for quality of life] (AViQ). https://www.aviq.be/.
  • Smits N. A note on Youden’s J and its cost ratio. BMC Med Res Methodol. 2010;10(1):1–4. doi:10.1186/1471-2288-10-89
  • Sutton CD. Classification and regression trees, bagging, and boosting. Handb Stat. 2005;24:303–329.
  • Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Classif Regres Trees. 1984;20:1–358.
  • Chen Y, Yang Y. The one standard error rule for model selection: does it work? Stats. 2021;4(4):868–892. doi:10.3390/stats4040051
  • Enger SM, Soe ST, Buist DSM, et al. Breast cancer treatment of older women in integrated health care settings. J Clin Oncol. 2006;24(27):4377–4383. doi:10.1200/JCO.2006.06.3065
  • Han Y, Sui Z, Jia Y, et al. Metastasis patterns and prognosis in breast cancer patients aged ≥ 80 years: a SEER database analysis. J Cancer. 2021;12(21):6445. doi:10.7150/jca.63813
  • Xu Y, Kong S, Cheung WY, et al. Development and validation of case-finding algorithms for recurrence of breast cancer using routinely collected administrative data. BMC Cancer. 2019;19(1):1–10. doi:10.1186/s12885-019-5432-8
  • Chubak J, Onega T, Zhu W, et al. An electronic health record-based algorithm to ascertain the date of second breast cancer events. Med Care. 2017;55:e81–e87. doi:10.1097/MLR.0000000000000352
  • Kroenke CH, Chubak J, Johnson L, et al. Enhancing breast cancer recurrence algorithms through selective use of medical record data. J Natl Cancer Inst. 2016;108. doi:10.1093/jnci/djv336
  • Cronin-Fenton D, Kjærsgaard A, Nørgaard M, et al. Breast cancer recurrence, bone metastases, and visceral metastases in women with stage II and III breast cancer in Denmark. Breast Cancer Res Treat. 2018;167(2):517–528. doi:10.1007/s10549-017-4510-3
  • In H, Bilimoria KY, Stewart AK, et al. Cancer recurrence: an important but missing variable in national cancer registries. Ann Surg Oncol. 2014;21(5):1520–1529. doi:10.1245/s10434-014-3516-x
  • Nout RA, Fiets WE, Struikmans H, et al. The in- or exclusion of non-breast cancer related death and contralateral breast cancer significantly affects estimated outcome probability in early breast cancer. Breast Cancer Res Treat. 2008;109(3):567–572. doi:10.1007/s10549-007-9681-x
  • Chubak J, Yu O, Pocobelli G, et al. Administrative data algorithms to identify second breast cancer events following early-stage invasive breast cancer. J Natl Cancer Inst. 2012;104(12):931–940. doi:10.1093/jnci/djs233
  • Nordstrom B, Whyte J, Stolar M, Catherine Mercaldi JK, Kallich JD. Identification of metastatic cancer in claims data. Pharmacoepidemiology. 2012;21(2):21–28. doi:10.1002/pds.3247
  • Nordstrom BL, Simeone JC, Malley KG, et al. Validation of claims algorithms for progression to metastatic cancer in patients with breast, non-small cell lung, and colorectal cancer. Pharmacoepidemiol Drug Saf. 2015;24(1, SI):511.
  • Pedersen RN, Oztü Rk Esen B€, Mellemkjaer L, et al. The incidence of breast cancer recurrence 10–32 years after primary diagnosis. J Natl Cancer Inst. 2021. doi:10.1093/JNCI/DJAB202
  • Lamont EB, Ii JEH, Weeks JC, et al. Measuring disease-free survival and cancer relapse using medicare claims from CALGB breast cancer trial participants (Companion to 9344). J Natl Cancer Inst. 2006;98(18):1335–1338. doi:10.1093/jnci/djj363
  • Chawla N, Yabroff KR, Mariotto A, et al. Limited validity of diagnosis codes in Medicare claims for identifying cancer metastases and inferring stage. Ann Epidemiol. 2014;24(9):666–672.e2. doi:10.1016/j.annepidem.2014.06.099
  • Hassett MJ, Ritzwoller DP, Taback N, et al. Validating billing/encounter codes as indicators of lung, colorectal, breast, and prostate cancer recurrence using 2 large contemporary cohorts. Med Care. 2014;52(10):e65–e73. doi:10.1097/MLR.0b013e318277eb6f
  • Sathiakumar N, Delzell E, Yun H, et al. Accuracy of medicare claim-based algorithm to detect breast, prostate, or lung cancer bone metastases. Med Care. 2017;55:e144–e149. doi:10.1097/MLR.0000000000000539
  • McClish D, Penberthy L, Pugh A. Using Medicare claims to identify second primary cancers and recurrences in order to supplement a cancer registry. J Clin Epidemiol. 2003;56(8):760–767. doi:10.1016/S0895-4356(03)00091-X