77
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Validity of Major Osteoporotic Fracture Diagnoses in the Danish National Patient Registry

ORCID Icon, ORCID Icon, , , , , ORCID Icon, & show all
Pages 257-266 | Received 12 Oct 2023, Accepted 08 Mar 2024, Published online: 13 Apr 2024

References

  • Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364–376. doi:10.1016/S0140-6736(18)32112-3
  • Leslie WD, Schousboe JT, Morin SN, et al. Fracture risk following high-trauma versus low-trauma fracture: a registry-based cohort study. Osteoporos Int. 2020;31(6):1059–1067. doi:10.1007/s00198-019-05274-2
  • Briot K, Paternotte S, Kolta S, et al. FRAX®: prediction of major osteoporotic fractures in women from the general population: the OPUS study. PLoS One. 2013;8(12):e83436. doi:10.1371/journal.pone.0083436
  • Clausen A, Möller S, Skjødt MK, Bech BH, Rubin KH. Evaluating the performance of the Charlson Comorbidity Index (CCI) in fracture risk prediction and developing a new Charlson Fracture Index (CFI): a register-based cohort study. Osteoporos Int. 2022;33(3):549–561. doi:10.1007/s00198-021-06293-8
  • Rubin KH, Möller S, Holmberg T, Bliddal M, Søndergaard J, Abrahamsen B. A New Fracture Risk Assessment Tool (FREM) Based on Public Health Registries. J Bone Miner Res. 2018;33(11):1967–1979. doi:10.1002/jbmr.3528
  • Skjødt MK, Möller S, Hyldig N, et al. Validation of the Fracture Risk Evaluation Model (FREM) in predicting major osteoporotic fractures and Hip fractures using administrative health data. Bone. 2021;147:115934. doi:10.1016/j.bone.2021.115934
  • Berry SD, Samelson EJ, Pencina MJ, et al. Repeat bone mineral density screening and prediction of Hip and major osteoporotic fracture. JAMA. 2013;310(12):1256–1262. doi:10.1001/jama.2013.277817
  • Looker AC. Serum 25-hydroxyvitamin D and risk of major osteoporotic fractures in older U.S. adults. J Bone Miner Res. 2013;28(5):997–1006. doi:10.1002/jbmr.1828
  • World Health Organization. International Statistical Classification of Diseases and Related Health Problems (ICD); 2022. Available from: https://www.who.int/standards/classifications/classification-of-diseases. Accessed March 27, 2024.
  • Konstantelos N, Rzepka AM, Burden AM, et al. Fracture definitions in observational osteoporosis drug effects studies that leverage healthcare administrative (claims) data: a scoping review. Osteoporos Int. 2022;33(9):1837–1844. doi:10.1007/s00198-022-06395-x
  • Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol. 2015;7:449–490. doi:10.2147/CLEP.S91125
  • Laursen MS, Pedersen JS, Vinholt PJ, Hansen RS, Savarimuthu TR. Benchmark for evaluation of Danish clinical word embeddings. North Eur J Lang Technol. 2023;9(1). doi:10.3384/nejlt.2000-1533.2023.4132
  • Pedersen JS, Laursen MS, Rajeeth Savarimuthu T, et al. Deep learning detects and visualizes bleeding events in electronic health records. Res Pract Thromb Haemost. 2021;5(4):e12505. doi:10.1002/rth2.12505
  • Hjelholt TJ, Edwards NM, Vesterager JD, Kristensen PK, Pedersen AB. The positive predictive value of Hip fracture diagnoses and surgical procedure codes in the Danish multidisciplinary Hip fracture registry and the Danish National Patient Registry. Clin Epidemiol. 2020;12:123–131. doi:10.2147/CLEP.S238722
  • StataCorp. Stata Statistical Software: Release 17. College Station, TX: StataCorp LLC; 2021.
  • StataCorp. Stata Statistical Software: Release 18. College Station, TX: StataCorp LLC; 2023.
  • Karimi D, Houkjær L, Gundtoft P, Brorson S, Viberg B. Positive predictive value of humeral fractures in the Danish National Patient Registry. Dan Med J. 2023;70(4):A10220612.
  • Sing CW, Woo YC, Lee ACH, et al. Validity of major osteoporotic fracture diagnosis codes in the Clinical Data Analysis and Reporting System in Hong Kong. Pharmacoepidemiol Drug Saf. 2017;26(8):973–976. doi:10.1002/pds.4208
  • Jean S, Candas B, Belzile É, et al. Algorithms can be used to identify fragility fracture cases in physician-claims databases. Osteoporos Int. 2012;23(2):483–501. doi:10.1007/s00198-011-1559-4
  • Wright NC, Daigle SG, Melton ME, Delzell ES, Balasubramanian A, Curtis JR. The Design and Validation of a New Algorithm to Identify Incident Fractures in Administrative Claims Data. J Bone Miner Res. 2019;34(10):1798–1807. doi:10.1002/jbmr.3807
  • Gundtoft PH, Danielsson FB, Houlind M, et al. The positive predictive value of ankle fracture diagnosis in the Danish National Patient Registry. Dan Med J. 2022;69(12):A01220032.
  • Martinez-Laguna D, Soria-Castro A, Carbonell-Abella C, et al. Validation of fragility fractures in primary care electronic medical records: a population-based study. Reumatol Clin. 2019;15(5):e1–e4. doi:10.1016/j.reuma.2017.10.013
  • Henriksen DP, Rasmussen L, Hansen MR, Hallas J, Pottegård A, Dalal K. Comparison of the five Danish regions regarding demographic characteristics, healthcare utilization, and medication use--a descriptive cross-sectional study. PLoS One. 2015;10(10):e0140197. doi:10.1371/journal.pone.0140197
  • World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi:10.1001/jama.2013.281053