88
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Eicosanoids metabolized through LOX distinguish asthma–COPD overlap from COPD by metabolomics study

, , , , , , , & show all
Pages 1769-1778 | Published online: 06 Aug 2019

References

  • Gelb AF, Christenson SA, Nadel JA. Understanding the pathophysiology of the asthma-chronic obstructive pulmonary disease overlap syndrome. Curr Opin Pulm Med. 2016;22(2):100–105. doi:10.1097/MCP.000000000000023626717511
  • Yanagisawa S, Ichinose M. Definition and diagnosis of asthma-COPD overlap (ACO). Allergol Int. 2018;67(2):172–178. doi:10.1016/j.alit.2018.01.00229433946
  • Wang J, Lv H, Luo Z, et al. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir Res. 2018;19(1):47. doi:10.1186/s12931-018-0755-629580282
  • Mindus S, Malinovschi A, Ekerljung L, et al. Asthma and COPD overlap (ACO) is related to a high burden of sleep disturbance and respiratory symptoms: results from the RHINE and Swedish GA2LEN surveys. PLoS One. 2018;13(4):e195055. doi:10.1371/journal.pone.0195055
  • Sorino C, Scichilone N, D’Amato M, Patella V, DI Marco F. Asthma-COPD overlap syndrome: recent advances in diagnostic criteria and prognostic significance. Minerva Med. 2017;108(3 Suppl 1):1–5. doi:10.23736/S0026-4806.17.05321-6
  • Sin DD. Asthma-COPD overlap syndrome: what we know and what we don’t. Tuberc Respir Dis (Seoul). 2017;80(1):11–20. doi:10.4046/trd.2017.80.1.1128119742
  • Kokturk N, Gurgun A, Sen E, et al. The view of the turkish thoracic society on the report of the GOLD 2017 global strategy for the diagnosis, management, and prevention of COPD. Turk Thorac J. 2017;18(2):57–64. doi:10.5152/TurkThoracJ.2017.06041729404162
  • Reinke SN, Gallart-Ayala H, Gomez C, et al. Metabolomics analysis identifies different metabotypes of asthma severity. Eur Respir J. 2017;49(3). doi:10.1183/13993003.01740-2016
  • Chang C, Guo ZG, He B, Yao W-Z. Metabolic alterations in the sera of Chinese patients with mild persistent asthma: a GC-MS-based metabolomics analysis. Acta Pharmacol Sin. 2015;36(11):1356–1366. doi:10.1038/aps.2015.10226526201
  • Lee DS, Park J, Kay KA, et al. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A. 2008;105(29):9880–9885. doi:10.1073/pnas.080220810518599447
  • Titz B, Luettich K, Leroy P, et al. Alterations in serum polyunsaturated fatty acids and eicosanoids in patients with mild to moderate chronic obstructive pulmonary disease (COPD). Int J Mol Sci. 2016;17(9):1583. doi:10.3390/ijms17091583
  • Huang Y, Chen G, Liu X, et al. Serum metabolomics study and eicosanoid analysis of childhood atopic dermatitis based on liquid chromatography-mass spectrometry. J Proteome Res. 2014;13(12):5715–5723. doi:10.1021/pr500706925316199
  • Tsikas D, Zoerner AA. Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: a historical retrospect and a discussion. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;964:79–88. doi:10.1016/j.jchromb.2014.03.017
  • Furman R, Lee JV, Axelsen PH. Analysis of eicosanoid oxidation products in Alzheimer brain by LC-MS with uniformly 13C-labeled internal standards. Free Radic Biol Med. 2018;118:108–118. doi:10.1016/j.freeradbiomed.2018.02.01929476920
  • Fang M, Ivanisevic J, Benton HP, et al. Thermal degradation of small molecules: a global metabolomic investigation. Anal Chem. 2015;87(21):10935–10941. doi:10.1021/acs.analchem.5b0300326434689
  • Bian X, Sun B, Zheng P, Li N, Wu J-L. Derivatization enhanced separation and sensitivity of long chain-free fatty acids: application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal Chim Acta. 2017;989:59–70. doi:10.1016/j.aca.2017.08.00928915943
  • Bian X, Li N, Tan B, et al. Polarity-tuning derivatization-LC-MS approach for probing global carboxyl-containing metabolites in colorectal cancer. Anal Chem. 2018;90(19):11210–11215. doi:10.1021/acs.analchem.8b0187330193063
  • Gu WY, Liu MX, Sun BQ, et al. Profiling of polyunsaturated fatty acids in human serum using off-line and on-line solid phase extraction-nano-liquid chromatography-quadrupole-time-of-flight mass spectrometry. J Chromatogr A. 2018;1537:141–146. doi:10.1016/j.chroma.2018.01.01529373129
  • Global Initiative for Asthma (GINA). Pocket guide for asthma management and prevention. Available from: http://ginasthma.org/download/520/wms-Main-pocket-guide_2017.pdf. Accessed July 10, 2019.
  • Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315–327. doi:10.1016/j.immuni.2014.02.00924656045
  • Chen W, Cao H, Lin J, Olsen N, Zheng SG. Biomarkers for primary sjogren’s syndrome. Genomics Proteomics Bioinformatics. 2015;13(4):219–223. doi:10.1016/j.gpb.2015.06.00226362815
  • Zheng SG. Transforming growth factor-beta level: indicator for severity of disease and organ damage in patients with systemic lupus erythematosus. J Rheumatol. 2010;37(10):1983–1985. doi:10.3899/jrheum.10055820889608
  • Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta. 2015;1851(4):340–355. doi:10.1016/j.bbalip.2014.10.00825449650
  • Moore GY, Pidgeon GP. Cross-talk between cancer cells and the tumour microenvironment: the role of the 5-lipoxygenase pathway. Int J Mol Sci. 2017;18(2):236. doi:10.3390/ijms18020236
  • Cossette C, Gravel S, Reddy CN, et al. Biosynthesis and actions of 5-oxoeicosatetraenoic acid (5-oxo-ETE) on feline granulocytes. Biochem Pharmacol. 2015;96(3):247–255. doi:10.1016/j.bcp.2015.05.00926032638
  • Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr. 2013;52(1):9–16. doi:10.3164/jcbn.12-11223341691
  • Wonisch W, Falk A, Sundl I, Winklhofer-Roob BM, Lindschinger M. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male. 2012;15(3):159–165. doi:10.3109/13685538.2012.66943622468695
  • Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol. 2015;760:49–63. doi:10.1016/j.ejphar.2015.03.08325895638
  • Szczeklik W, Sanak M, Mastalerz L, et al. 12-hydroxy-eicosatetraenoic acid (12-HETE): a biomarker of Churg-Strauss syndrome. Clin Exp Allergy. 2012;42(4):513–522. doi:10.1111/j.1365-2222.2011.03943.x22417211
  • Zhao J, Minami Y, Etling E, et al. Preferential generation of 15-HETE-PE induced by IL-13 regulates goblet cell differentiation in human airway epithelial cells. Am J Respir Cell Mol Biol. 2017;57(6):692–701. doi:10.1165/rcmb.2017-0031OC28723225
  • Morin C, Sirois M, Echave V, Gomes MM, Rousseau E. Functional effects of 20-HETE on human bronchi: hyperpolarization and relaxation due to BKCa channel activation. Am J Physiol Lung Cell Mol Physiol. 2007;293(4):L1037–L1044. doi:10.1152/ajplung.00145.200717660330
  • Nieves D, Moreno JJ. Hydroxyeicosatetraenoic acids released through the cytochrome P-450 pathway regulate 3T6 fibroblast growth. J Lipid Res. 2006;47(12):2681–2689. doi:10.1194/jlr.M600212-JLR20016980726
  • Li J, Zhang Y, Liu Y, et al. PGC-1alpha plays a major role in the anti-apoptotic effect of 15-HETE in pulmonary artery endothelial cells. Respir Physiol Neurobiol. 2015;205:84–91. doi:10.1016/j.resp.2014.10.01525447678