74
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Quadriceps Endurance Increases Following Cycling Exercise With Non-Invasive Ventilation In Moderate-To-Severe COPD Patients. A Non-Randomized Controlled Study

ORCID Icon, ORCID Icon, , , &
Pages 2461-2468 | Published online: 05 Nov 2019

References

  • Maltais F, Decramer M, Casabury R, et al. An Official American Thoracic Society/European Respiratory Society Statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189:e15–e62. doi:10.1164/rccm.201402-0373ST24787074
  • Menadue C, Piper AJ, Van ’t Hul AJ, Wong KK. Non-invasive ventilation during exercise training for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2014 John Wiley and Sons Ltd. doi:10.1002/14651858.CD007714.pub2
  • van ’t Hul A, Gosselink R, Hollander P, Postmus P, Kwakkel G. Acute effects of inspiratory pressure support during exercise in patients with COPD. Eur Respir J. 2004;23:34–40. doi:10.1183/09031936.03.0001690314738228
  • Borghi-Silva A, Oliveira C, Carrascosa C, et al. Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax. 2008;63:910–915. doi:10.1136/thx.2007.09016718492743
  • Dempsey JA, Romer L, Rodman J, Miller J, Smith C. Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol. 2006;151:242–250. doi:10.1016/j.resp.2005.12.01516616716
  • Mador MJ, Deniz O, Aggarwal A, Kufel TJ. Quadriceps fatigability after single muscle exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:102–108. doi:10.1164/rccm.200202-080OC12689846
  • Saey D, Debigaré R, LeBlanc P, et al. Contractile leg fatigue after cycle exercise: a factor limiting exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:425–430. doi:10.1164/rccm.200208-856OC12714348
  • Saey D, Michaud A, Couillard A, et al. Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:1109–1115. doi:10.1164/rccm.200408-1005OC15735055
  • Amann M. Exercise-induced metabolic perturbation: all roads lead to Rome. Exp Physiol. 2010;95:765–766. doi:10.1113/expphysiol.2010.05352020554925
  • Coronell C, Orozco-Levi M, Méndez R, et al. Relevance of assessing quadriceps endurance in patients with COPD. Eur Respir J. 2004;24:129–136. doi:10.1183/09031936.04.0007960315293615
  • Vogelmeier C, Criner G, Martinez F, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Eur Respir J. 2017;49:1700214. doi:10.1183/13993003.00214-201728182564
  • Levinger I, Goodman C, Hare D, et al. The reliability of the 1RM strength test for untrained middle-aged individuals. J Sci Med Sport. 2009;12:310–316. doi:10.1016/j.jsams.2007.10.00718078784
  • Kraemer WJ, Ratamess N, Fry A, French D. Strength training: development and evaluation of methodology In: Maud PJ, Foster C, editors. Physiological Assessment of Human Fitness. Champaign: Human Kinetics; 2006:119–150.
  • Serres I, Gautier V, Varray A, Préfaut C. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest. 1998;113:900–905. doi:10.1378/chest.113.4.9009554623
  • Ribeiro F, Lépine P, Garceau-Bolduc C, et al. Test-retest reliability of lower limb isokinetic endurance in COPD: a comparison of angular velocities. Int J of Chron Obstruct Pulmon Dis. 2015;10:1163–1172.26124656
  • Eldridge SM, Chan CL, Campbell MJ, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016;2. doi:10.1186/s40814-016-0105-8
  • Maltais F, Reissmann H, Gottfried SB. Pressure support reduces inspiratory effort and dyspnea during exercise in chronic airflow obstruction. Am J Respir Crit Care Med. 1995;151:1027–1033. doi:10.1164/ajrccm.151.4.76972267697226
  • Hussain O, Collins E, Adiguzel N, et al. Contrasting pressure-support ventilation and helium–oxygen during exercise in severe COPD. Respir Med. 2011;105:494–505. doi:10.1016/j.rmed.2010.08.00820851591
  • Oliveira C, Carrascosa C, Borghi-Silva A, et al. Influence of respiratory pressure support on hemodynamics and exercise tolerance in patients with COPD. Eur J Appl Physiol. 2010;109:681–689. doi:10.1007/s00421-010-1408-820213467
  • Nyberg A, Saey D, Why MF. How limb muscle mass and function should be measured in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2015;12:1269–1277. doi:10.1513/AnnalsATS.201505-278PS26208090
  • Bassett D, Howley E. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84. doi:10.1097/00005768-200001000-0001210647532
  • Evans S, Watson L, Hawkins M, et al. Respiratory muscle strength in chronic heart failure. Thorax. 1995;50:625–628. doi:10.1136/thx.50.6.6257638803
  • Richardson RS. Skeletal muscle dysfunction vs. muscle disuse in patients with COPD. J Appl Physiol. 1999;86:1751–1752. doi:10.1152/jappl.1999.86.5.175110391744
  • Koch R, Rapello GVG, de Tarso Müller P. Is inspiratory muscle weakness a determinant of endurance exercise tolerance during NIV-supported exercise in patients with COPD? J Cardiopulm Rehabil. 2018;Prev.38(6):E9–E11.