637
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Effectiveness of Drug Repurposing and Natural Products Against SARS-CoV-2: A Comprehensive Review

, ORCID Icon, , , & ORCID Icon
Pages 1-25 | Received 26 Aug 2023, Accepted 14 Nov 2023, Published online: 03 Jan 2024

References

  • Pande M, Debanjan Kundu RS. Drugs repurposing against SARS-CoV2 and the new variant B.1.1.7 (Alpha Strain) targeting the spike protein: molecular docking and Simulation studies. Estuar Coast Shelf Sci. 2021;7:107397. doi:10.1016/j.heliyon.2021.e07803
  • Das A, Roy S, Swarnakar S, Chatterjee N. Understanding the immunological aspects of SARS-CoV-2 causing COVID-19 pandemic: a therapeutic approach. Clin Immunol. 2021;231:108804. doi:10.1016/j.clim.2021.108804
  • Manta B, Sarkisian AG. Fisiopatología de la enfermedad COVID-19. Odontoestomatologia. 2022;24:1–19. doi:10.22592/ode2022n39e312
  • Jessie H, Hume AJ, Abo KM, et al. SARS-CoV-2 infection of pluripotent stem cell- derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Ann Oncol. 2020;110:19–21.
  • Zhu Y, Sharma L, Chang D. Pathophysiology and clinical management of coronavirus disease (COVID-19): a mini-review. Front Immunol. 2023;14(August):1–13. doi:10.3389/fimmu.2023.1116131
  • Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017–1032. doi:10.1038/s41591-020-0968-3
  • Zhang Q, Xiang R, Huo S, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1). doi:10.1038/s41392-021-00653-w
  • Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol. 2022;23(1):21–39. doi:10.1038/s41580-021-00432-z
  • V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–170. doi:10.1038/s41579-020-00468-6
  • Kumar S, Nyodu R, Maurya VK, Saxena SK. Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronav Dis. 2020;2:23–31. doi:10.1007/978-981-15-4814-7_3
  • BBC NEWS. Cifras de la pandemia país por país [Pandemic figures country by country]; 2021. Available from: https://www.bbc.com/mundo/noticias-51705060. Accessed September 6, 2021.
  • Farooqi T, Ahmad Malik J, Hanif Mulla A, et al. An overview of SARS-COV-2 epidemiology, mutant variants, vaccines, and management strategies. Carbohydr Polym. 2019;115800. doi:10.1016/j.jiph.2021.08.014
  • Srivastava V, Ahmad A. New perspective towards therapeutic regimen against SARS-CoV-2 infection. J Infect Public Health. 2021;14(7):852–862. doi:10.1016/j.jiph.2021.05.009
  • Muhammed Y, Yusuf A, Pius M, et al. SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: a review. Biosaf Health. 2021;3(5):249–263. doi:10.1016/j.bsheal.2021.07.003
  • Covid: qué son baricitinib y sotrovimab, los nuevos medicamentos que autorizó la OMS para tratar casos de la enfermedad [COVID: what are baricitinib and sotrovimab, the new drugs authorized by the WHO to treat cases of the disease]. BBC News Mundo. Available from: https://www.bbc.com/mundo/noticias-60058017. Accessed January 22, 2022
  • Matrose NA, Obikese K, Belay ZA, Caleb OJ. Drug repurposing against coronavirus disease 2019 (COVID-19): a review. Sci Total Environ. 2021;135907. doi:10.1016/j.jpha.2021.09.001
  • Aronskyy I, Masoudi-Sobhanzadeh Y, Cappuccio A, Zaslavsky E. Advances in the computational landscape for repurposed drugs against COVID-19. Drug Discov Today. 2021;26(12):2800–2815. doi:10.1016/j.drudis.2021.07.026
  • Goyal M, Tewatia N, Vashisht H, Jain R, Kumar S. Novel Corona virus (COVID-19); Global efforts and effective investigational medicines: a review. J Infect Public Health. 2021;14(7):910–921. doi:10.1016/j.jiph.2021.04.011
  • Malek RJ, Bill CA, Vines CM. Clinical drug therapies and biologicals currently used or in clinical trial to treat COVID-19. Biomed Pharmacother. 2021;144(August):112276. doi:10.1016/j.biopha.2021.112276
  • WHO Solidarity Trial Consortium. Repurposed antiviral drugs for covid-19 — interim who solidarity trial results. N Engl J Med. 2021;384(6):497–511. doi:10.1056/nejmoa2023184
  • Kmietowicz Z. Covid-19: WHO recommends baricitinib and sotrovimab to treat patients. BMJ. 2022;o97. doi:10.1136/bmj.o97
  • Lamontagne F, Agoritsas T, Siemieniuk R, et al. A living WHO guideline on drugs to prevent covid-19. BMJ. 2021:372. doi:10.1136/bmj.n526
  • Rehman MU, Abdullah KF, Niaz K. Introduction to natural products analysis. Recent Adv Nat Prod Anal. 2020;3–15. doi:10.1016/B978-0-12-816455-6.00001-9
  • Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216. doi:10.1038/s41573-020-00114-z
  • Panikar S, Shoba G, Arun M, et al. Essential oils as an effective alternative for the treatment of COVID-19: molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J Infect Public Health. 2021;14(5):601–610. doi:10.1016/j.jiph.2020.12.037
  • Aucoin M, Cardozo V, McLaren MD, et al. A systematic review on the effects of Echinacea supplementation on cytokine levels: is there a role in COVID-19? Metab Open. 2021;11:100115. doi:10.1016/j.metop.2021.100115
  • Nagoor Meeran MF, Javed H, Sharma C, et al. Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019. Heliyon. 2021;7(2):e05990. doi:10.1016/j.heliyon.2021.e05990
  • Das K. Herbal plants as immunity modulators against COVID-19: a primary preventive measure during home quarantine. J Herb Med. 2022;32:100501. doi:10.1016/j.hermed.2021.100501
  • Zhang D, Hamdoun S, Chen R, et al. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol Res. 2021;172:105820. doi:10.1016/j.phrs.2021.105820
  • Omrani M, Keshavarz M, Nejad Ebrahimi S, et al. Potential natural products against respiratory viruses: a perspective to develop anti-COVID-19 medicines. Front Pharmacol. 2021;11. doi:10.3389/fphar.2020.586993
  • Kumar A, Choudhir G, Shukla SK, et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn. 2021;39(10):3760–3770. doi:10.1080/07391102.2020.1772112
  • Gyebi GA, Ogunro OB, Adegunloye AP, Ogunyemi OM, Afolabi SO. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaloids and terpenoids from African medicinal plants. J Biomol Struct Dyn. 2021;39(9):3396–3408. doi:10.1080/07391102.2020.1764868
  • Runfeng L, Yunlong H, Jicheng H, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 2020;156:104761. doi:10.1016/j.phrs.2020.104761
  • Akinlalu AO, Chamundi A, Yakumbur DT, et al. Repurposing FDA-approved drugs against multiple proteins of SARS-CoV-2: an in silico study. Sci Afr. 2021;13:e00845. doi:10.1016/j.sciaf.2021.e00845
  • Jain S, Kumar P, Vyas RK, Pandit P, Dalai AK. Occurrence and removal of antiviral drugs in environment: a review. Water Air Soil Pollut. 2013;224(2). doi:10.1007/s11270-012-1410-3
  • Srivastava K, Singh MK. Drug repurposing in COVID-19: a review with past, present and future. Metab Open. 2021;12:100121. doi:10.1016/j.metop.2021.100121
  • Tichauer JE, Soto D, Andresen M. Characterization of the modulatory effect of hydroxychloroquine on ACE2 Activity: new insights in relation to COVID-19. Biomed Res Int. 2021;2021:1–5. doi:10.1155/2021/6614000
  • Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:1–10. doi:10.1186/1743-422X-2-69
  • Alsuwaidan S, Memish ZA, Alaklobi F, Khan K, Alajami HN. The utilization of hydroxychloroquine to reduce the main signs and symptoms of COVID-19 patients, a cross-sectional study. Ann Med Surg. 2021;70:102867. doi:10.1016/j.amsu.2021.102867
  • Oriol M, Marc C-M, Maria U. Hydroxychloroquine for early treatment of adults with mild covid-19: a randomized- controlled trial. Clin Infect Dis. 2020;54(650):1–54.
  • Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19: a Randomized Trial. Ann Intern Med. 2020;173(8):623–631. doi:10.7326/M20-4207
  • Kamstrup P, Sivapalan P, Eklöf J, et al. Hydroxychloroquine as a primary prophylactic agent against SARS-CoV-2 infection: a cohort study. Int J Infect Dis. 2021;108:370–376. doi:10.1016/j.ijid.2021.05.076
  • Rentsch CT, DeVito NJ, MacKenna B, et al. Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform. Lancet Rheumatol. 2021;3(1):e19–e27. doi:10.1016/S2665-9913(20)30378-7
  • Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate covid-19. N Engl J Med. 2020;383(21):2041–2052. doi:10.1056/nejmoa2019014
  • Lamback EB, de Oliveira MA, Haddad AF, et al. Hydroxychloroquine with azithromycin in patients hospitalized for mild and moderate COVID-19. Brazilian J Infect Dis. 2021;25(2):1–6. doi:10.1016/j.bjid.2021.101549
  • Gupta S, Dixit PK, Ghana P, et al. Open-label randomized control trial of hydroxychloroquine in patients with moderate to severe coronavirus disease 2019 infection. Med J Armed Forces India. 2021;77:S305–S311. doi:10.1016/j.mjafi.2021.02.007
  • Cadegiani FA, Goren A, Wambier CG, McCoy J. Early COVID-19 therapy with azithromycin plus nitazoxanide, ivermectin or hydroxychloroquine in outpatient settings significantly improved COVID-19 outcomes compared to known outcomes in untreated patients. New Microbes New Infect. 2021;43:100915. doi:10.1016/j.nmni.2021.100915
  • Chivese T, Musa OAH, Hindy G, et al. Efficacy of chloroquine and hydroxychloroquine in treating COVID-19 infection: a meta-review of systematic reviews and an updated meta-analysis. Travel Med Infect Dis. 2021;43(July):102135. doi:10.1016/j.tmaid.2021.102135
  • Das S, Ramachandran AK, Birangal SR, Akbar S, Ahmed B, Joseph A. The controversial therapeutic journey of chloroquine and hydroxychloroquine in the battle against SARS-CoV-2: a comprehensive review. Med Drug Discov. 2021;10:100085. doi:10.1016/j.medidd.2021.100085
  • Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, et al. Atorvastatin effectively inhibits ancestral and two emerging variants of SARS-CoV-2 in vitro. Front Microbiol. 2022;13(March). doi:10.3389/fmicb.2022.721103
  • Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, et al. Curcumin inhibits in vitro sars-cov-2 infection in Vero E6 cells through multiple antiviral mechanisms. Molecules. 2021;26(22):1–17. doi:10.3390/molecules26226900
  • Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome main point: hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clin Infect Dis. 2020;2:1–25.
  • Yepes-Perez AF, Herrera-Calderón O, Oliveros CA, et al. The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Vitro. Evidence-Based Complement Altern Med. 2021;2021:1–11. doi:10.1155/2021/6679761
  • U.S Food and Drug Administration (FDA). Memorandum explaining basis for revocation of emergency use authorization for chloroquine phosphate and hydroxychloroquine sulfate. FDA site; 2020. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and. Accessed December 18, 2023.
  • U.S Food and Drug Administration (FDA). FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems; 2020. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or. Accessed December 18, 2023.
  • Kinobe RT, Owens L. A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin’s possible mode of action against SARS-CoV-2. Fundam Clin Pharmacol. 2021;35(2):260–276. doi:10.1111/fcp.12644
  • Yang SNY, Atkinson SC, Wang C, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res. 2020;177:104760. doi:10.1016/J.ANTIVIRAL.2020.104760
  • Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α / β -mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Bioch J. 2012;856:851–856. doi:10.1042/BJ20120150
  • Lehrer S, Rheinstein PH. Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In vivo. 2020;34(5):3023–3026. doi:10.21873/invivo.12134
  • Ahmed S, Mahbubul M, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Biomed Biotechnol Res J. 2020;21(January):1–4. doi:10.21203/rs.3.rs-317485/v1
  • Mahmud R, Rahman MM, Alam I, et al. Ivermectin in combination with doxycycline for treating COVID-19 symptoms: a randomized trial. J Int Med Res. 2021;49(5):030006052110135. doi:10.1177/03000605211013550
  • Okumuş N, Demirtürk N, Çetinkaya RA, et al. Evaluation of the effectiveness and safety of adding ivermectin to treatment in severe COVID-19 patients. BMC Infect Dis. 2021;21(1):1–11. doi:10.1186/s12879-021-06104-9
  • Zein AFMZ, Sulistiyana CS, Raffaelo WM, Pranata R. Ivermectin and mortality in patients with COVID-19: a systematic review, meta-analysis, and meta-regression of randomized controlled trials: ivermectin and COVID-19. Diabetes Metab Syndr Clin Res Rev. 2021;15(4):102186. doi:10.1016/j.dsx.2021.102186
  • Mansour SM, Shamma RN, Ahmed KA, et al. Safety of inhaled ivermectin as a repurposed direct drug for treatment of COVID-19: a preclinical tolerance study. Int Immunopharmacol. 2021;99(1):108004. doi:10.1016/j.intimp.2021.108004
  • Krolewiecki A, Lifschitz A, Moragas M, et al. Antiviral effect of high-dose ivermectin in adults with COVID-19: a proof-of-concept randomized trial. EClinicalMedicine. 2021;37. doi:10.1016/j.eclinm.2021.100959
  • López-Medina E, López P, Hurtado IC, et al. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial. JAMA. 2021;325(14):1426–1435. doi:10.1001/jama.2021.3071
  • Reis G, Silva EASM, Silva DCM, et al. Effect of early treatment with ivermectin among patients with covid-19. N Engl J Med. 2022;386(18):1721–1731. doi:10.1056/NEJMoa2115869
  • Calello DP, Kazzi Z, Stolbach A. American College of Medical Toxicology (ACMT) Cautions Against Off-Label Prescribing of Ivermectin for the Prevention or Treatment of COVID-19. J Med Toxicol. 2022;18(1):69–70. doi:10.1007/s13181-021-00866-z
  • CDC Health Alert Network. CDC HEALTH ADVISORY. Rapid increase in ivermectin prescriptions and reports of severe illness associated with use of products containing ivermectin to prevent or treat COVID-19; 2021.
  • Baudou E, Lespine A, Durrieu G, et al. Serious ivermectin toxicity and human ABCB1 nonsense mutations. N Engl J Med. 2020;69(1):787–789.
  • Ivermectina: cómo la falsa ciencia inventó un fármaco “milagroso” contra la covid-19 [Ivermectin: how false science invented a “miracle” drug against COVID-19]. BBC News Mundo. Available from: https://www.bbc.com/mundo/noticias-58828993. Accessed January 24, 2022
  • Huge study supporting ivermectin as Covid treatment withdrawn over ethical concerns | medical research | the Guardian. Available from: https://www.theguardian.com/science/2021/jul/16/huge-study-supporting-ivermectin-as-covid-treatment-withdrawn-over-ethical-concerns. Accessed January 24, 2022
  • FDA. Why you should not use ivermectin to treat or prevent COVID-19. Available from: https://www.fda.gov/consumers/consumer-updates/why-you-should-not-use-ivermectin-treat-or-prevent-covid-19. Accessed May 31, 2022.
  • Sallard E, Lescure F-X, Burdet C, Guedj J, Yazdan Yazdanpanah NP-S. Repurposed prophylaxis strategies for COVID-19: a review. medRxiv. 2020;600:2020–2025.
  • Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. doi:10.1038/s41422-020-0282-0
  • Zaidi AK, Dehgani-Mobaraki P. The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review. J Antibiot. 2022;75(2):60–71. doi:10.1038/s41429-021-00491-6
  • Caly L, Druce JD, Catton MG, Jans DA, Wagsta KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178(January):104787. doi:10.1016/j.antiviral.2020.104787
  • Yadav R, Imran M, Dhamija P, Suchal K, Handu S. Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2. J Biomol Struct Dyn. 2021;39(12):4433–4448. doi:10.1080/07391102.2020.1778536
  • Dallocchio RN, Dessì A, De Vito A, Delogu G, Serra PA, Madeddu G. Early combination treatment with existing HIV antivirals: an effective treatment for COVID-19? Eur Rev Med Pharmacol Sci. 2021;25(5):2435–2448. doi:10.26355/eurrev_202103_25285
  • Taylor K, Fritz K, Parmar M. Lamivudine. Kucers use antibiot a clin rev antibacterial, antifung antiparasit antivir drugs; 2021:3729–3754. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559252/. Accessed September 8, 2021
  • Uzunova K, Filipova E, Pavlova V, Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed Pharmacother. 2020;131:110668. doi:10.1016/j.biopha.2020.110668
  • Fadaka AO, Aruleba RT, Sibuyi NRS, Klein A, Madiehe AM, Meyer M. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: a computational-aided approach. J Biomol Struct Dyn. 2020;1(1):1–13. doi:10.1080/07391102.2020.1847197
  • Barreto RG, Brites C. Low frequency of hypersensitivity reactions to Abacavir in HIV infected patients in a referral center in Bahia, Brazil. Brazilian J Infect Dis. 2019;23(4):268–270. doi:10.1016/j.bjid.2019.06.003
  • Chien M, Anderson TK, Jockusch S, et al. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J Proteome Res. 2020;19(11):4690–4697. doi:10.1021/acs.jproteome.0c00392
  • Quo R, De Clercq E. Remdesivir: quo vadis? Biochem Pharmacol. 2021;193:114800.
  • Ribavirin EAA, Remdesivir S. Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. 2020;253:117592. doi:10.1016/J.LFS.2020.117592
  • Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J. 2020;18:784–790. doi:10.1016/j.csbj.2020.03.025
  • Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection. Eur Hear J Cardiovasc Pharmacother. 2020;6(4):258–259. doi:10.1093/EHJCVP/PVAA042
  • Gonzale SM, Aguilar-Jimenez W, Trujillo-Gil E, et al. Vitamin D treatment of peripheral blood mononuclear cells modulated immune activation and reduced susceptibility to HIV-1 infection of CD4+ T lymphocytes. PLoS One. 2019;14(9):1–15. doi:10.1371/journal.pone.0222878
  • Edwards Z, Ingold CJ, Azmat CE. Zidovudine. Kucers use antibiot a clin rev antibacterial, antifung antiparasit antivir drugs; 2021:3657–3697. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554419/. Accessed September 8, 2021
  • Ju J, Li X, Kumar S, et al. Nucleotide analogues as inhibitors of SARS-CoV Polymerase. Pharmacol Res Perspect. 2020;8(6):1–9. doi:10.1002/prp2.674
  • Zapata-Cardona MI, Florez-Alvarez L, Guerra-Sandoval AL, et al. In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: a drug repurposing approach. AIMS Microbiol. 2023;9(1):20–40. doi:10.3934/microbiol.2023002
  • García-Trejo JJ, Ortega R, Zarco-Zavala M. Putative repurposing of lamivudine, a nucleoside/nucleotide analogue and antiretroviral to improve the outcome of cancer and COVID-19 patients. Front Oncol. 2021;11:1–17. doi:10.3389/fonc.2021.664794
  • Saxena RK, Samad AA, Khan UR, et al. Assessment of prevalence of SARS-CoV-2 Infection in patients on anti- HBV (lamivudine) treatment: a questionnaire based survey. IP Int J Med Microbiol Trop Dis. 2021;7(7):10–8231. doi:10.18231/j.ijmmtd.2021.005
  • Jockusch S, Tao C, Li X, Anderson TK, Chien M. A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19. Antiviral Res. 2020;180:104857.
  • Tomić D, Davidović D, Szasz A, et al. The screening and evaluation of potential clinically significant HIV drug combinations against the SARS-CoV-2 virus. Inf Med. 2021;23:100529.
  • Del Amo J, Polo R, Moreno S, et al. Incidence and severity of COVID-19 in HIV-positive persons receiving antiretroviral therapy. Ann Intern Med. 2020;173(7):536–541. doi:10.7326/M20-3689
  • Alshaeri HK, Natto ZS. A contemporary look at COVID-19 medications: available and potentially effective drugs. Eur Rev Med Pharmacol Sci. 2020;24(17):9188–9195. doi:10.26355/eurrev_202009_22870
  • Kickbusch I, Leung G, Briand S, et al. WHO R&D Blueprint Informal consultation on prioritization of candidate therapeutic agents for use in novel coronavirus 2019 infection. Euro Surveill. 2020;25(January):709–710. doi:10.1046/j.1466-7657.2000.00027
  • Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695–1704.
  • Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787–1799. doi:10.1056/nejmoa2001282
  • Cheng CY, Lee YL, Chen CP, et al. Lopinavir/ritonavir did not shorten the duration of SARS CoV-2 shedding in patients with mild pneumonia in Taiwan. J Microbiol Immunol Infect. 2020;53(3):488–492. doi:10.1016/j.jmii.2020.03.032
  • Ader F, Peiffer-smadja N, Poissy J, et al. An open-label randomized controlled trial of the effect of lopinavir / ritonavir, lopinavir / ritonavir plus IFN- b −1a and hydroxychloroquine in hospitalized patients with COVID-19, on behalf of the DisCoVeRy study. Clin Microbiol Infect. 2021;27(12):1826–1837. doi:10.1016/j.cmi.2021.05.020
  • Arabi YM, Gordon AC, Derde LPG, et al. Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial. Intensive Care Med. 2021;47(8):867–886. doi:10.1007/s00134-021-06448-5
  • Reis G, Moreira Silva EADS, Medeiros Silva DC, et al. Effect of early treatment with hydroxychloroquine or lopinavir and ritonavir on risk of hospitalization among patients with COVID-19: the TOGETHER randomized clinical trial. JAMA Netw Open. 2021;4(4):1–14. doi:10.1001/jamanetworkopen.2021.6468
  • Vangeel L, Chiu W, De Jonghe S, et al. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res. 2022;198(January):10–12. doi:10.1016/j.antiviral.2022.105252
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 — final Report. N Engl J Med. 2020;383(19):1813–1826. doi:10.1056/nejmoa2007764
  • Olender SA, Perez KK, Go AS, et al. Remdesivir for severe coronavirus disease 2019 (COVID-19) versus a cohort receiving standard of care. Clin Infect Dis. 2021;73(11):E4166–E4174. doi:10.1093/cid/ciaa1041
  • Rezagholizadeh A, Khiali S, Sarbakhsh P, Entezari-Maleki T. Remdesivir for treatment of COVID-19; an updated systematic review and meta-analysis. EuropJ Pharmacol. 2021;897:173926.
  • Gottlieb RL, Vaca CE, Paredes R, et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med. 2022;386(4):305–315. doi:10.1056/nejmoa2116846
  • Parienti JJ, Prazuck T, Peyro-Saint-Paul L, et al. Effect of tenofovir disoproxil fumarate and emtricitabine on nasopharyngeal SARS-CoV-2 viral load burden amongst outpatients with COVID-19: a pilot, randomized, open-label phase 2 trial. eClinicalMedicine. 2021;38. doi:10.1016/j.eclinm.2021.100993
  • Park S, Yu K, Kim Y, et al. Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets. mBIO. 2020;11(3):1–10. doi:10.1186/s13287-019-1471-y
  • Vos AG, Venter WDF Toxicidad cardiovascular de la terapia antirretroviral contemporánea [Cardiovascular toxicity of contemporary antiretroviral therapy]. Available from: https://pubmed.ncbi.nlm.nih.gov/34545036/. Accessed September 23, 2021
  • Panche A, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5. doi:10.1017/jns.2016.41
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–1099. doi:10.1111/jth.14817
  • Sadeghipour P, Talasaz AH, Rashidi F, et al. Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the intensive care unit: the INSPIRATION randomized clinic. JAMA. 2021;325(16):1620–1630. doi:10.1001/jama.2021.4152
  • Lopes RD, Gabriel P, De BM, et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397(10291):2253–2263. doi:10.1016/S0140-6736(21)01203-4
  • Jonmarker S, Hollenberg J, Dahlberg M, et al. Dosing of thromboprophylaxis and mortality in critically ill COVID –19 patients. Crit Care. 2020:1–10. doi:10.1186/s13054-020-03375-7
  • Barnes GD, Burnett A, Allen A, et al. Thromboembolic prevention and anticoagulant therapy during the COVID-19 pandemic: updated clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2022;54(2):197–210. doi:10.1007/s11239-022-02643-3
  • Gabara C, Solarat B, Castro P, Fern S. Anticoagulation strategies and risk of bleeding events in critically ill COVID-19 patients. Med Inten. 2023;47(1):1–8. doi:10.1016/j.medin.2021.07.004
  • Piazza G, Campia U, Hurwitz S, et al. Registry of arterial and venous thromboembolic complications in patients with COVID-19. J Am Coll Cardiol. 2020;76(18):2060–2072. doi:10.1016/j.jacc.2020.08.070
  • Goldenberg NA, Sochet A, Albisetti M, et al. Consensus-based clinical recommendations and research priorities for anticoagulant thromboprophylaxis in children hospitalized for COVID-19–related illness. J Thromb Haemost. 2020;18(11):3099–3105. doi:10.1111/jth.15073
  • The REMAP-CAP, ACTIV-4a, and ATTACC Investigators. Therapeutic anticoagulation with heparin in critically ill patients with covid-19. N Engl J Med. 2021;385(9):777–789. doi:10.1056/nejmoa2103417
  • Rey JR, Luis Merino J, Iniesta ÁM, et al. Influencia del tratamiento con estatinas en una cohorte de pacientes ingresados por COVID-19. Med Clin. 2021. doi:10.1016/j.medcli.2021.07.003
  • Rodriguez-Nava G, Trelles-Garcia DP, Yanez-Bello MA, Chung CW, Trelles-Garcia VP, Friedman HJ. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study. Crit Care. 2020;24(1):4–5. doi:10.1186/s13054-020-03154-4
  • Santosa A, Franzén S, Nåtman J, Wettermark B, Parmryd I, Nyberg F. Protective effects of statins on COVID-19 risk, severity and fatal outcome: a nationwide Swedish cohort study. Sci Rep. 2022;12(1):1–9. doi:10.1038/s41598-022-16357-2
  • Daniels LB, Ren J, Kumar K, et al. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: findings from the American Heart Association’s COVID-19 cardiovascular disease registry. PLoS One. 2021;16(7 July):1–16. doi:10.1371/journal.pone.0254635
  • Antonazzo IC, Fornari C, Rozza D, et al. Statins use in patients with cardiovascular diseases and COVID-19 Outcomes: an Italian population-based cohort study. J Clin Med. 2022;11(24):7492. doi:10.3390/jcm11247492
  • Barge-caballero E, Marcos-rodríguez PJ, Domenech-garcía N, Mu J. Survival impact of previous statin therapy in patients hospitalized with COVID-19. Med Clín. 2023;160(1):1–9.
  • Yetmar ZA, Challener DW, Tleyjeh IM, et al. Association between chronic statin use and 30-day mortality in hospitalized patients with COVID-19. Mayo Clin Proc Innov Qual Outcomes. 2021;5(2):442–446. doi:10.1016/j.mayocpiqo.2021.02.002
  • Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J. Atorvastatin effectively inhibits late replicative cycle steps of SARS-CoV-2 in vitro. bioRxiv. 2021;2021:1. doi:10.1101/2021.03.01.433498
  • Glorieux FH, Pettifor JM. Vitamin D/dietary calcium deficiency rickets and pseudo-vitamin D deficiency rickets. Bonekey Rep. 2014;3(March):1–6. doi:10.1038/bonekey.2014.19
  • Lung BE, Mowery ML, Calcitriol KDEE. xPharm Compr Pharmacol Ref; 2021:1–5. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526025/. Accessed September 10, 2021
  • Sadeghzadeh M, Khoshnevisasl P, Motamed N, Faghfouri L. The serum vitamin D levels in children with urinary tract infection: a case–control study. New Microbes New Infect. 2021;43:100911. doi:10.1016/j.nmni.2021.100911
  • Nimavat N, Singh S, Singh P, Singh SK, Sinha N. Vitamin D deficiency and COVID-19: a case-control study at a tertiary care hospital in India. Ann Med Surg. 2021;68:102661. doi:10.1016/j.amsu.2021.102661
  • Pereira M, Dantas Damascena A, Galvão Azevedo LM, de Almeida Oliveira T, da Mota Santana J. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020;1–9. doi:10.1080/10408398.2020.1841090
  • Annweiler C, Beaudenon M, Simon R, et al. Vitamin D supplementation prior to or during COVID-19 associated with better 3-month survival in geriatric patients: extension phase of the GERIA-COVID study. J Steroid Biochem Mol Biol. 2021;213(May):105958. doi:10.1016/j.jsbmb.2021.105958
  • Nasiri M, Khodadadi J, Molaei S. Does vitamin D serum level affect prognosis of COVID-19 patients? Int J Infect Dis. 2021;107:264–267. doi:10.1016/j.ijid.2021.04.083
  • Elham AS, Azam K, Azam J, Mostafa L, Nasrin B, Marzieh N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin Nutr ESPEN. 2021;43:276–282. doi:10.1016/j.clnesp.2021.03.040
  • Diaz-Curiel M, Cabello A, Arboiro-Pinel R, et al. The relationship between 25(OH) vitamin D levels and COVID-19 onset and disease course in Spanish patients. J Steroid Biochem Mol Biol. 2021;212(January):6–11. doi:10.1016/j.jsbmb.2021.105928
  • Entrenas M, Manuel L, Costa E, Bouillon R, Francisco J. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751. doi:10.1016/j.jsbmb.2020.105751
  • Rawat D, Roy A, Maitra S, Shankar V, Khanna P, Baidya DK. Vitamin D supplementation and COVID-19 treatment: a systematic review and meta-analysis. Diabetes Metab Syndr Clin Res Rev. 2021;15(4):102189. doi:10.1016/j.dsx.2021.102189
  • Güven M, Gültekin H. The effect of high-dose parenteral vitamin D3 on COVID-19-related inhospital mortality in critical COVID-19 patients during intensive care unit admission: an observational cohort study. Eur J Clin Nutr. 2021;75(9):1383–1388. doi:10.1038/s41430-021-00984-5
  • Shah K, Saxena D, Mavalankar D. Vitamin D supplementation, COVID-19 and disease severity: a meta-analysis. Qjm. 2021;114(3):175–181. doi:10.1093/qjmed/hcab009
  • Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med. 2014;4(1):24–35. doi:10.4103/2225-4110.124335
  • Silveira D, Prieto-Garcia JM, Boylan F, et al. COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol. 2020;11:1–44. doi:10.3389/fphar.2020.581840
  • Marutescu L, Popa M, Saviuc C, Lazar V, Chifiriuc MC. Botanical pesticides with virucidal, bactericidal, and fungicidal activity. New Pestic Soil Sensors. 2017;311–335. doi:10.1016/B978-0-12-804299-1.00009-6
  • Humayun F, Khan A, Ahmad S, et al. Abrogation of SARS-CoV-2 interaction with host (NRP1) neuropilin-1 receptor through high-affinity marine natural compounds to curtail the infectivity: a structural-dynamics data. Comput Biol Med. 2021:104714. doi:10.1016/j.compbiomed.2021.104714
  • Abebe EC, Ayele TM, Muche ZT, Dejenie TA. Neuropilin 1: a novel entry factor for sars-cov-2 infection and a potential therapeutic target. Biol Targets Ther. 2021;15:143–152. doi:10.2147/BTT.S307352
  • Alhadrami HA, Burgio G, Thissera B, et al. Neoechinulin A as a Promising SARS-CoV-2 M pro Inhibitor: in vitro and in silico study showing the ability of simulations in discerning active from inactive enzyme inhibitors. Mar Drugs Artic. 2022;20(3):163. doi:10.3390/md20030163
  • Mahmoud DB, Ismail WM, Moatasim Y, et al. Delineating a potent antiviral activity of Cuphea ignea extract loaded nano-formulation against SARS-CoV-2: in silico and in vitro studies. J Drug Deliv Sci Technol. 2021;66:102845. doi:10.1016/j.jddst.2021.102845
  • Yang M, Wei J, Huang T, et al. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phyther Res. 2021;35(3):1127–1129. doi:10.1002/ptr.6916
  • Ter Ellen BM, Kumar ND, Bouma EM, et al. Resveratrol and pterostilbene inhibit sars-cov-2 replication in air–liquid interface cultured human primary bronchial epithelial cells. Viruses. 2021;13(7):1335. doi:10.3390/v13071335
  • Salminen W, Agbaje-williams M, Ajayi FO. A unique formulation of cardioprotective bio-actives: an overview of their safety profile. Medicines. 2019;6(4):107. doi:10.3390/medicines6040107
  • Kemper C, Behnam D, Brothers S, et al. Safety and pharmacokinetics of a highly bioavailable resveratrol preparation (JOTROL TM). AAPS open. 2022;8(1):11. doi:10.1186/s41120-022-00058-1
  • Suručić R, Maja T, Petković M, et al. Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: in silico and in vitro studies. Mol Cell Biochem. 2021;476(2):1179–1193. doi:10.1007/s11010-020-03981-7
  • Kandeil A, Mostafa A, Kutkat O, et al. Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2. Pathogens. 2021;10(6):758. doi:10.3390/pathogens10060758
  • Tirelli C, De Amici M, Albrici C, et al. Exploring the role of immune system and inflammatory cytokines in sars-cov-2 induced lung disease: a narrative review. Biology. 2023;12(2):177.
  • Food E, Authority S. Refined exposure assessment for curcumin (E 100). EFSA J. 2014;12(10):1–43. doi:10.2903/j.efsa.2014.3876
  • Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:4–7. doi:10.1186/1472-6882-6-10
  • Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004;10(20):6847–6854. doi:10.1158/1078-0432.CCR-04-0744
  • Pancholi V, Smina TP, Kunnumakkara AB, Maliakel B, Krishnakumar IM. Safety assessment of a highly bioavailable curcumin-galactomannoside complex (CurQfen) in healthy volunteers, with a special reference to the recent hepatotoxic reports of curcumin supplements: a 90-days prospective study. Toxicol Rep. 2021;8(May):1255–1264. doi:10.1016/j.toxrep.2021.06.008
  • Abian O, Ortega-alarcon D, Jimenez-alesanco A, Ceballos-laita L. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol. 2020;164:1693–1703. doi:10.1016/j.ijbiomac.2020.07.235
  • Bhowmik D, Nandi R, Prakash A, Kumar D. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon. 2021;7:e06515. doi:10.1016/j.heliyon.2021.e06515
  • Saeedi-boroujeni A. Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm. 2021;6:1–9.
  • Miyamoto N, Izumi H, Miyamoto R, et al. Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway. Investig Ophthalmol Vis Sci. 2011;52(2):1055–1063. doi:10.1167/iovs.10-5777
  • Olagnier D, Farahani E, Thyrsted J, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020;11(1):1–12. doi:10.1038/s41467-020-18764-3
  • Carfora V, Spiniello G, Ricciolino R, et al. Anticoagulant treatment in COVID ‑ 19: a narrative review. J Thromb Thrombolysis. 2021;51(3):642–648. doi:10.1007/s11239-020-02242-0
  • Shohan M, Nashibi R, Mahmoudian-sani M. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: a randomized controlled trial. Eur. J. Pharmacol. 2022;914:174615.
  • Belhassan A, Zaki H, Chtita S, et al. Camphor, artemisinin and sumac phytochemicals as inhibitors against COVID-19: computational approach. Comput Biol Med. 2021;136:104758. doi:10.1016/j.compbiomed.2021.104758
  • Li L, Ma L, Hu Y, et al. Natural biflavones are potent inhibitors against SARS-CoV-2 papain-like protease. Phytochemistry. 2022;193(July 2021):112984. doi:10.1016/j.phytochem.2021.112984
  • Xiao T, Cui M, Zheng C, et al. Myricetin Inhibits SARS-CoV-2 viral replication by targeting mpro and ameliorates pulmonary inflammation. Front Pharmacol. 2021;12:1–9. doi:10.3389/fphar.2021.669642
  • Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087–4095. doi:10.1021/jm070295s
  • Alhadrami HA, Sayed AM, Sharif AM, Azhar EI, Rateb ME. Olive-derived triterpenes suppress SARS COV-2 main protease: a promising scaffold for future therapeutics. Molecules. 2021;26(9):2654.
  • Carino A, Moraca F, Fiorillo B, et al. Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain. Front Chem. 2020;8(October):1–15. doi:10.3389/fchem.2020.572885
  • Pasquereau S, Nehme Z, Haidar Ahmad S, et al. Resveratrol inhibits hcov-229e and sars-cov-2 coronavirus replication in vitro. Viruses. 2021;13(2):1–11. doi:10.3390/v13020354
  • Zhang B, Swamy S, Balijepalli S, et al. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J. 2019;33(12):13294–13309. doi:10.1096/fj.201901047RR
  • Cheng F-J, Huynh T-K, Yang C-S, et al. Hesperidin Is a Potential Inhibitor against. Nutrients. 2021:13. doi:10.3390/nu14010013
  • Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013;10(5):210–229. doi:10.4314/ajtcam.v10i5.2
  • Luo L, Jiang J, Wang C, et al. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm Sin B. 2020;10(7):1192–1204. doi:10.1016/j.apsb.2020.05.007
  • Valoyes DC, Palacios Palacios L. Patrones de uso de las plantas medicinales en el Chocó y Cauca (Colombia) [Patterns of use of medicinal plants in Chocó and Cauca (Colombia)]. Cienc en Desarro. 2020;11(2):85–96 Spanish . doi:10.19053/01217488.v11.n2.2020.10583
  • Flórez-álvarez L, Martínez-Moreno J, Zapata-Cardona MI, Galeano E, Alzate-Guarin F, Zapata W. In vitro antiviral activity against SARS-CoV-2 of plant extracts used in Colombian traditional medicine. Vitae. 2022;29(1):1–11. doi:10.17533/udea.vitae.v29n1a347854
  • Jaimes-Gualdron T, Florez-Alvarez L, Zapata-Cardona MI, Rojano BA, Rugeles MT, Zapata-Builes W. Corozo (Bactris guineensis) fruit extract has antiviral activity in vitro against SARS-CoV-2. Funct Foods Health Dis. 2022;12(9):534–546. doi:10.31989/ffhd.v12i9.918
  • Urueña C, Ballesteros-Ramírez R, Gomez-Cadena A, et al. Randomized double-blind clinical study in patients with COVID-19 to evaluate the safety and efficacy of a phytomedicine (P2Et). Front Med. 2022;9:991873. doi:10.3389/fmed.2022.991873