587
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem

ORCID Icon & ORCID Icon
Pages 1979-1995 | Received 01 Apr 2022, Accepted 02 Jul 2022, Published online: 03 Apr 2023

References

  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277–283.
  • Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013;4:47. doi:10.3389/fmicb.2013.00047
  • Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23(4):795. doi:10.3390/molecules23040795
  • Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R. Global geographic trends in antimicrobial resistance: the role of international travel. J Travel Med. 2019;26(8). doi:10.1093/jtm/taz036
  • Zhang S, Huang J, Zhao Z, Cao Y, Li B. Hospital wastewater as a reservoir for antibiotic resistance genes: a meta-analysis. Front Public Health. 2020;8:574968. doi:10.3389/fpubh.2020.574968
  • Kolokotsa A, Leotsinidis M, Kalavrouziotis I, Sazakli E. Effects of tourist flows on antibiotic resistance in wastewater of a Greek island. J Appl Microbiol. 2021;130(2):516–527. doi:10.1111/jam.14808
  • Burnham JP. Climate change and antibiotic resistance: a deadly combination. Ther Adv Infect Dis. 2021;8:204993612199137. doi:10.1177/2049936121991374
  • Centers for Disease Control and Prevention, About Antibiotic Resistance. Centers for Disease Control and Prevention, National Center for Emerging and Zoono; 2022. Available from: https://www.cdc.gov/drugresistance/about.html. Accessed January 26, 2022.
  • Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Curr Opin Pharmacol. 2014;18:56–60. doi:10.1016/j.coph.2014.09.006
  • Read AF, Woods RJ. Antibiotic resistance management. Evol Med Public Health. 2014;2014(1):147. doi:10.1093/emph/eou024
  • Luyt CE, Brechot N, Trouillet JL, Chastre J. Antibiotic stewardship in the intensive care unit. Crit Care. 2014;18(5):480. doi:10.1186/s13054-014-0480-6
  • Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis. 2013;56(10):1445–1450. doi:10.1093/cid/cit070
  • Cassini A, Monnet DL, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56–66. doi:10.1016/S1473-3099(18)30605-4
  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. PMID: 35065702; PMCID: PMC8841637. doi:10.1016/S0140-6736(21)02724-0
  • O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Wellcome Trust, HM Government; 2016.
  • Viswanathan VK. Off-label abuse of antibiotics by bacteria. Gut Microbes. 2014;5(1):3–4. doi:10.4161/gmic.28027
  • Truszczyński M, Posyniak A, Pejsak Z. Mechanisms of the emergence of resistance against the action of antibiotics and disinfectants in bacteria. Medycyna Weterynaryjna. 2013;69(3):131–135.
  • Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol. 2020;96(5):fiaa031. doi:10.1093/femsec/fiaa031
  • Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343(6167):183–186. doi:10.1126/science.1243457
  • Yonezawa H, Osaki T, Kurata S, et al. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 2009;9:197. doi:10.1186/1471-2180-9-197
  • Altindis E, Fu Y, Mekalanos JJ. Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc Natl Acad Sci U S A. 2014;111(15):E1548–E1556. doi:10.1073/pnas.1403683111
  • Toyofuku M, Tashiro Y, Hasegawa Y, Kurosawa M, Nomura N. Bacterial membrane vesicles, an overlooked environmental colloid: biology, environmental perspectives and applications. Adv Colloid Interface Sci. 2015;226(Pt A):65–77. doi:10.1016/j.cis.2015.08.013
  • Acar JF, Moulin G. Antimicrobial resistance: a complex issue. Rev Sci Tech. 2012;31(1):23–31. doi:10.20506/rst.31.1.2098
  • Ghosh D, Veeraraghavan B, Elangovan R, Vivekanandan P. Antibiotic resistance and epigenetics: more to it than meets the eye. Antimicrob Agents Chemother. 2020;64(2):e02225–e02219. doi:10.1128/AAC.02225-19
  • van der Woude MW, Bäumler AJ. Phase and antigenic variation in bacteria. Clin Microbiol Rev. 2004;17(3):581–611. doi:10.1128/CMR.17.3.581-611.2004
  • Henderson IR, Owen P, Nataro JP. Molecular switches--The ON and OFF of bacterial phase variation. Mol Microbiol. 1999;33(5):919–932. doi:10.1046/j.1365-2958.1999.01555.x
  • Adam M, Murali B, Glenn NO, Potter SS. Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol Biol. 2008;8:52. doi:10.1186/1471-2148-8-52
  • Motta SS, Cluzel P, Aldana M. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS One. 2015;10(3):e0118464. doi:10.1371/journal.pone.0118464
  • Grote J, Krysciak D, Streit WR. Phenotypic heterogeneity, a phenomenon that may explain why quorum sensing does not always result in truly homogenous cell behavior. Appl Environ Microbiol. 2015;81(16):5280–5289. doi:10.1128/AEM.00900-15
  • Sánchez-Romero MA, Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci U S A. 2014;111(1):355–360. doi:10.1073/pnas.1316084111
  • Sorg RA, Veening JW. Microscale insights into pneumococcal antibiotic mutant selection windows. Nat Commun. 2015;6:8773. doi:10.1038/ncomms9773
  • El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev. 2015;28(1):191–207. doi:10.1128/CMR.00058-14
  • Sudha A, Augustine N, Tomas S. Emergence of multi-drug resistant bacteria in the Arctic,79N. J Cell Life Sci. 2013;1:1–5.
  • Goethem MWV, Pierneef R, Bezuidt OKI, Peer YVD, Cowan DA, Makhalanyane TP. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6:40. doi:10.1186/s40168-018-0424-5
  • Jara D, Bello-Toledo H, Domínguez M, et al. Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Sci Rep. 2020;10(1):3145. doi:10.1038/s41598-020-60035-0
  • Sjölund M, Bonnedahl J, Hernandez J, et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis. 2008;14(1):70–72. doi:10.3201/eid1401.070704
  • Akhil Prakash E, Hromádková T, Jabir T, et al. Dissemination of multidrug resistant bacteria to the polar environment - Role of the longest migratory bird Arctic tern (Sterna paradisaea). Sci Total Environ. 2022;815:152727. doi:10.1016/j.scitotenv.2021.152727
  • Hernández J, González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol. 2016;6:32112. doi:10.3402/iee.v6.32112
  • Miller RV, Gammon K, Day MJ. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Can J Microbiol. 2009;55(1):37–45. doi:10.1139/W08-119
  • Sunde M, Ramstad SN, Rudi K, et al. Plasmid-associated antimicrobial resistance and virulence genes in Escherichia coli in a high Arctic reindeer subspecies. J Glob Antimicrob Resist. 2021;26:317–322. PMID: 34216807. doi:10.1016/j.jgar.2021.06.003
  • Tam HK, Wong CM, Yong ST, Blamey JM, González M. Multiple-antibiotic-resistant bacteria from the maritime Antarctic. Polar Biol. 2015;38:1129–1141. doi:10.1007/s00300-015-1671-6
  • Laganà P, Caruso G, Corsi I, et al. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int J Hyg Environ Health. 2019;222(1):89–100. doi:10.1016/j.ijheh.2018.08.009
  • Liu Y, Liu W, Yang X, Wang J, Lin H, Yang Y. Microplastics are a hotspot for antibiotic resistance genes: progress and perspective. Sci Total Environ. 2021;773:145643. doi:10.1016/j.scitotenv.2021.145643
  • Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014;22(1):36–41. doi:10.1016/j.tim.2013.11.001
  • Di Cesare A, Eckert EM, Corno G. Co-selection of antibiotic and heavy metal resistance in freshwater bacteria. J Limnol. 2016;75(s2):59–66. doi:10.4081/jlimnol.2016.1198
  • Cuadrat RRC, Sorokina M, Andrade BG, Goris T, Dávila AMR. Global ocean resistome revealed: exploring antibiotic resistance gene abundance and distribution in TARA Oceans samples. Gigascience. 2020;9(5):giaa046. doi:10.1093/gigascience/giaa046
  • Grenni P, Ancona V, Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchem J. 2018;136:25–39. doi:10.1016/j.microc.2017.02.006
  • Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms. 2019;7(6):180. doi:10.3390/microorganisms7060180
  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–332. doi:10.1016/j.ijantimicag.2009.12.011
  • Hayward JL, Jackson AJ, Yost CK, Truelstrup Hansen L, Jamieson RC. Fate of antibiotic resistance genes in two Arctic tundra wetlands impacted by municipal wastewater. Sci Total Environ. 2018;642:1415–1428. doi:10.1016/j.scitotenv.2018.06.083
  • Li A-D, Metch JW, Wang Y, et al. Effects of sample preservation and DNA extraction on enumeration of antibiotic resistance genes in wastewater. FEMS Microbiol Ecol. 2018;94:1–11. doi:10.1093/femsec/fix189
  • Zou HY, He LY, Gao FZ, et al. Antibiotic resistance genes in surface water and groundwater from mining affected environments. Sci Total Environ. 2021;772:145516. doi:10.1016/j.scitotenv.2021.145516
  • Pereira AR, Paranhos AGO, de Aquino SF, Silva SQ. Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Environ Sci Pollut Res Int. 2021;28(21):26380–26403. doi:10.1007/s11356-021-13784-y
  • Ouyang WY, Huang FY, Zhao Y, Li H, Su JQ. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl Microbiol Biotechnol. 2015;99(13):5697–5707. doi:10.1007/s00253-015-6416-5
  • Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol. 2012;46(21):11541–11549. doi:10.1021/es302657r
  • Rosenblatt-Farrell N. The landscape of antibiotic resistance. Environ Health Perspect. 2009;117(6):A244–A250. doi:10.1289/ehp.117-a244
  • Aronson RB, Thatje S, McClintock JB, Hughes KA. Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci. 2011;1223:82–107. doi:10.1111/j.1749-6632.2010.05926.x
  • Spence R. Distribution and taxonomy of Enterococci from the Davis Station wastewater discharge, Antarctica Doctoral dissertation. Queensland University of T; 2014.
  • Karkman A, Pärnänen K, Larsson DGJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10(1):80. doi:10.1038/s41467-018-07992-3
  • Kalinowska A, Jankowska K, Fudala-Ksiazek S, Pierpaoli M, Luczkiewicz A. The microbial community, its biochemical potential, and the antimicrobial resistance of Enterococcus spp. in Arctic lakes under natural and anthropogenic impact (West Spitsbergen). Sci Total Environ. 2021;763:142998. doi:10.1016/j.scitotenv.2020.142998
  • Laganà P, Votano L, Caruso G, Azzaro M, Lo Giudice A, Delia S. Bacterial isolates from the Arctic region (Pasvik River, Norway): assessment of biofilm production and antibiotic susceptibility profiles. Environ Sci Pollut Res Int. 2018;25(2):1089–1102. doi:10.1007/s11356-017-0485-1
  • Prakash B, Veeregowda BM, Krishnappa G. Biofilms: a survival strategy of bacteria. Curr Sci. 2003;85(9):1299–1307.
  • Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 2015;10(11):1743–1750. doi:10.2217/fmb.15.69
  • Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol. 2002;46:202–256.
  • Balcázar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol. 2015;6:1216. doi:10.3389/fmicb.2015.01216
  • Salcedo DE, Lee JH, Ha UH, Kim SP. The effects of antibiotics on the biofilm formation and antibiotic resistance gene transfer. Desalination Water Treat. 2014;54:3582–3588. doi:10.1080/19443994.2014.923206
  • Sanz-Lázaro C, Fodelianakis S, Guerrero-Meseguer L, Marín A, Karakassis I. Effects of organic pollution on biological communities of marine biofilm on hard substrata. Environ Pollut. 2015;201:17–25. doi:10.1016/j.envpol.2015.02.032
  • Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol. 2012;65(2):183–195. doi:10.1111/j.1574-695X.2012.00960.x
  • Mo SS, Sunde M, Ilag HK, Langsrud S, Heir E. Transfer potential of plasmids conferring extended-spectrum-cephalosporin resistance in Escherichia coli from poultry. Appl Environ Microbiol. 2017;83(12):e00654–e00617. doi:10.1128/AEM.00654-17
  • Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112(18):5649–5654. doi:10.1073/pnas.1503141112
  • Boy-Roura M, Mas-Pla J, Petrovic M, et al. Towards the understanding of antibiotic occurrence and transport in groundwater: findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain) Sci. Total Environ. 2018;612:1387–1406. doi:10.1016/j.scitotenv.2017.09.012
  • Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345–360. doi:10.1016/j.scitotenv.2013.01.032
  • Ragush CM, Schmidt JJ, Krkosek WH, Gagnon GA, Truelstrup Hansen L, Jamieson RC. Performance of municipal waste stabilization ponds in the Canadian Arctic. Ecol Eng. 2015;83:413–421. doi:10.1016/j.ecoleng.2015.07.008
  • Balch G, Hayward J, Jamieson R, Wootton B, Yates CN. Recommendations for the use of tundra wetlands for treatment of municipal wastewater in Canada’s far north. In: Nagabhatla N, Metcalfe C, editors. Multifunctional Wetlands. Springer Nature; 2018:83–120.
  • Hayward J, Jamieson R, Boutilier L, Goulden T, Lam B. Treatment performance assessment and hydrological characterization of an Arctic tundra wetland receiving primary treated municipal wastewater. Ecol Eng. 2014;73:786–797. doi:10.1016/j.ecoleng.2014.09.107
  • Neudorf KD, Huang YN, Ragush CM, Yost CK, Jamieson RC, Truelstrup Hansen L. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Sci Total Environ. 2017;598:1085–1094. doi:10.1016/j.scitotenv.2017.04.151
  • Nagulapally SR, Ahmad A, Henry A, Marchin GL, Zurek L, Bhandari A. Occurrence of ciprofloxacin-, trimethoprim-sulfamethoxazole-, and vancomycin-resistant bacteria in a municipal wastewater treatment plant. Water Environ Res. 2009;81(1):82–90. doi:10.2175/106143008x304596
  • Amos GC, Hawkey PM, Gaze WH, Wellington EM. Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J Antimicrob Chemother. 2014;69(7):1785–1791. doi:10.1093/jac/dku079
  • Daley K, Castleden H, Jamieson R, Furgal C, Ell L. Water systems, sanitation, and public health risks in remote communities: Inuit resident perspectives from the Canadian Arctic. Soc Sci Med. 2015;135:124–132. doi:10.1016/j.socscimed.2015.04.017
  • Daley K, Jamieson R, Rainham D, Truelstrup Hansen L. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic. Environ Sci Pollut Res Int. 2018;25(33):32860–32872. doi:10.1007/s11356-017-8566-8
  • Moniz K, Walker VK, Shah V. Antibiotic resistance in mucosal bacteria from high Arctic migratory salmonids. Environ Microbiol Rep. 2021;14(3):385–390. doi:10.1111/1758-2229.12975
  • Atterby C, Ramey AM, Hall GG, Järhult J, Börjesson S, Bonnedahl J. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect Ecol Epidemiol. 2016;6:32334. doi:10.3402/iee.v6.32334
  • Ramey AM, Hernandez J, Tyrlöv V, et al. Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska. Ecohealth. 2018;15(1):72–81. doi:10.1007/s10393-017-1302-5
  • Szczepanowski R, Linke B, Krahn I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology. 2009;155(Pt 7):2306–2319. doi:10.1099/mic.0.028233-0
  • Narciso-da-Rocha C, Varela AR, Schwartz T, Nunes OC, Manaia CM. BlaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. J Glob Antimicrob Resist. 2014;2(4):309–315. doi:10.1016/j.jgar.2014.10.001
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–433. doi:10.1128/MMBR.00016-10
  • Gromala M, Neufeld JD, McConkey BJ. Monitoring microbial populations and antibiotic resistance gene enrichment associated with arctic waste stabilization ponds. Appl Environ Microbiol. 2021;87(7):e02914–e02920. doi:10.1128/AEM.02914-20
  • Sturgill MG, Rapp RP. Clarithromycin: review of a new macrolide antibiotic with improved microbiologic spectrum and favorable pharmacokinetic and adverse effect profiles. Ann Pharmacother. 1992;26(9):1099–1108. doi:10.1177/106002809202600912
  • Siedlecka A, Wolf-Baca MJ, Piekarska K. Antibiotic and disinfectant resistance in tap water strains - insight into the resistance of environmental bacteria. Pol J Microbiol. 2021;70(1):57–67. doi:10.33073/pjm-2021-004
  • Bai X, Ma X, Xu F, Li J, Zhang H, Xiao X. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Sci Total Environ. 2015;533:24–31. doi:10.1016/j.scitotenv.2015.06.082
  • Flores Ribeiro A, Bodilis J, Alonso L, et al. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Sci Total Environ. 2014;490:370–378. doi:10.1016/j.scitotenv.2014.05.012
  • Furuhata K, Kato Y, Goto K, Hara M, Yoshida S, Fukuyama M. Isolation and identification of methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility. Microbiol Immunol. 2006;50(1):11–17. doi:10.1111/j.1348-0421.2006.tb03765.x
  • Khan S, Knapp CW, Beattie TK. Antibiotic resistant bacteria found in municipal drinking water. Environ Process. 2016;3:541–552. doi:10.1007/s40710-016-0149-z
  • Vaz-Moreira I, Nunes OC, Manaia CM. Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Sci Total Environ. 2017;586:1141–1149. doi:10.1016/j.scitotenv.2017.02.104
  • Figueira V, Serra EA, Vaz-Moreira I, Brandão TR, Manaia CM. Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. J Water Health. 2012;10(1):1–10. doi:10.2166/wh.2011.002
  • Leginowicz M, Siedlecka A, Piekarska K. Bio diversity and antibiotic resistance of bacteria isolated from tap water in Wrocław, Poland. Environ Prot Eng. 2018;44(4):85–98.
  • Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004;12(9):412–416. doi:10.1016/j.tim.2004.07.004
  • Miłobedzka A, Ferreira C, Vaz-Moreira I, et al. Monitoring antibiotic resistance genes in wastewater environments: the challenges of filling a gap in the One-Health cycle. J Hazard Mater. 2022;424(PtC):127407. PMID: 34629195. doi:10.1016/j.jhazmat.2021.127407
  • Pietramellara G, Ascher J, Borgogni F, Ceccherini M, Guerri G, Nannipieri P. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils. 2009;45(3):219–235. doi:10.1007/s00374-008-0345-8
  • Levy-Booth DJ, Campbell RG, Gulden RH, et al. Cycling of extracellular DNA in the soil environment. Soil Biol Biochem. 2007;39(12):2977–2991. doi:10.1016/j.soilbio.2007.06.020
  • Zhang YJ, Hu HW, Yan H, et al. Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils. Sci Total Environ. 2019;668:193–203. doi:10.1016/j.scitotenv.2019.02.454
  • Gramegna A, Millar BC, Contarini M, et al. In vitro synergistic effect of NaCl and antibiotics against P. aeruginosa from cystic fibrosis patients. J. Cyst Fibros. 2017;S116:S63–S174. doi:10.1016/s1569-1993(17)30557-x
  • Storz G, Hengge-Aronis R. Bacterial Stress Responses. 2nd ed. Washington, DC: ASM Press; 2000.
  • Cruz-Loya M, Kang TM, Lozano NA, et al. Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature. ISME J. 2019;13(1):12–23. doi:10.1038/s41396-018-0241-7
  • Poole K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 2012;20(5):227–234. doi:10.1016/j.tim.2012.02.004
  • Yuan K, Yu K, Yang R, et al. Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotoxicol Environ Saf. 2019;176:300–308. doi:10.1016/j.ecoenv.2019.03.099
  • Wang F, Stedtfeld RD, Kim OS, et al. Influence of soil characteristics and proximity to Antarctic research stations on abundance of antibiotic resistance genes in soils. Environ Sci Technol. 2016;50(23):12621–12629. doi:10.1021/acs.est.6b02863
  • Stark JS, Corbett PA, Dunshea G, et al. The environmental impact of sewage and wastewater outfalls in Antarctica: an example from Davis station, East Antarctica. Water Res. 2016;105:602–614. doi:10.1016/j.watres.2016.09.026
  • El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D. The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem. 2004;279(29):30106–30113. doi:10.1074/jbc.M401701200
  • Cytryn E. The soil resistome: the anthropogenic, the native, and the unknown. Soil Biol Biochem. 2013;63:18–23. doi:10.1016/j.soilbio.2013.03.01
  • Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC. Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb Ecol. 2014;67(1):120–128. doi:10.1007/s00248-013-0296-y
  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8(1):15–25. doi:10.1038/nrmicro2259
  • Forsberg KJ, Patel S, Gibson MK, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509(7502):612–616. doi:10.1038/nature13377
  • Hall BG, Barlow M. Evolution of the serine β-lactamases: past, present and future. Drug Resist Updat. 2004;7(2):111–123. doi:10.1016/j.drup.2004.02.003
  • González-Pleiter M, Velázquez D, Casero MC, et al. Microbial colonizers of microplastics in an Arctic freshwater lake. Sci Total Environ. 2021;795:148640. doi:10.1016/j.scitotenv.2021.148640
  • González-Pleiter M, Velázquez D, Edo C, et al. Fibers spreading worldwide: microplastics and other anthropogenic litter in an Arctic freshwater lake. Sci Total Environ. 2020;722:137904. doi:10.1016/j.scitotenv.2020.137904
  • Huntington A, Corcoran PL, Jantunen L, et al. A first assessment of microplastics and other anthropogenic particles in Hudson Bay and the surrounding eastern Canadian Arctic waters of Nunavut. FACETS. 2020;5(1):432–454. doi:10.1139/facets-2019-0042
  • Granberg M, von Friesen LW, Bach L, Collard F, Gabrielsen GW, Strand J. Anthropogenic microlitter in wastewater and marine samples from NY-ålesund. Barentsburg and Signehamna, Svalbard, Report C 373; 2019. Available from: https://www.ivl.se/download/18.34244ba71728fcb3f3fab0/1591706072832/C373.pdf. Accessed March 21, 2023.
  • Cincinelli A, Scopetani C, Chelazzi D, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere. 2017;175:391–400. doi:10.1016/j.chemosphere.2017.02.024
  • Tekman MB, Wekerle C, Lorenz C, et al. Tying up loose ends of microplastic pollution in the Arctic: distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ Sci Technol. 2020;54(7):4079–4090. doi:10.1021/acs.est.9b0698
  • La Daana KK, Gardfeldt K, Krumpen T, Thompson RC, O’Connor I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci Rep. 2020;10:1–11. doi:10.1038/s41598-019-56847-4
  • Barrows APW, Cathey SE, Petersen CW. Marine environment microfiber contamination: global patterns and the diversity of microparticle origins. Environ Pollut. 2018;237:275–284. doi:10.1016/j.envpol.2018.02.062
  • Peeken I, Primpke S, Beyer B, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat Commun. 2018;9:1–12. doi:10.1038/s41467-018-03825-5
  • Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv. 2019;5. doi:10.1126/sciadv.aax1157
  • Kühn S, Schaafsma FL, van Werven B, et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 2018;41(6):1269–1278. doi:10.1007/s00300-018-2283-8
  • Fang C, Zheng R, Hong F, et al. Microplastics in three typical benthic species from the Arctic: occurrence, characteristics, sources, and environmental implications. Environ Res. 2021;192:110326. doi:10.1016/j.envres.2020.110326
  • Rochman CM, Hoh E, Hentschel BT, Kaye S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ Sci Technol. 2013;47(3):1646–1654. doi:10.1021/es303700s
  • Velzeboer I, Kwadijk CJ, Koelmans AA. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol. 2014;48(9):4869–4876. doi:10.1021/es405721v
  • Menéndez-Pedriza A, Jaumot J. Interaction of environmental pollutants with microplastics: a critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics. 2020;8(2):40. doi:10.3390/toxics8020040
  • Dong H, Chen Y, Wang J, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. J Hazard Mater. 2021;403:123961. doi:10.1016/j.jhazmat.2020.123961
  • Martins CC, Bícego MC, Taniguchi S, Montone RC. Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarctic Sci. 2004;16(2):117–122. doi:10.1017/S0954102004001932
  • Wang S, Xue N, Li W, Zhang D, Pan X, Luo Y. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Sci Total Environ. 2020;708:134594. doi:10.1016/j.scitotenv.2019.134594
  • Mazińska B, Hryniewicz W. Antimicrobial resistance: causes and consequences. Postepy Mikrobiologii. 2020;59(3):249–257. doi:10.21307/PM-2020.59.3.18
  • Ahmad M, Khan AU. Global economic impact of antibiotic resistance: a review. J Glob Antimicrob Resist. 2019;19:313–316. doi:10.1016/j.jgar.2019.05.024
  • Organisation for Economic Co-operation and Development (OECD). AMR - Tackling the Burden in the European Union, Briefing note for EU/EEA countries; 2019. Available from: https://www.oecd.org/health/health-systems/AMR-Tackling-The-Burden-in-The-EU-OECD-ECDC-Briefing-Note-2019.pdf. Accessed February 17, 2022.
  • Guetiya Wadoum RE, Zambou NF, Anyangwe FF, et al. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br Poult Sci. 2016;57(4):483–493. doi:10.1080/00071668.2016.1180668
  • Żabicka D. Oporność na antybiotyki w Polsce i Europie w 2019 roku – dane sieci EARS Net, Zakład Epidemiologii i Mikrobiologii Klinicznej, Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów (KORLD) [Antibiotic resistance in Poland and Europe in 2019 - EARS Net data, Department of Epidemiology and Clinical Microbiology, National Reference Center for Antimicrobial Susceptibility (KORLD)]. Narodowy Instytut Leków, Warszawa, Aktualności Narodowego Programu Ochrony Antybiotyków; 2020:3. Available from: http://antybiotyki.edu.pl/wp-content/uploads/2021/01/Biuletyn-NPOA-3_2020.pdf. Accessed March 21, 2023.
  • Beyene T. Veterinary drug residues in food-animal products: its risk factors and potential effects on public health. J Vet Sci Technol. 2016;7:285. doi:10.4172/2157-7579.1000285
  • Nisha AR. Antibiotic residues-A global health hazard. Vet World. 2008;12:375–377. doi:10.5455/vetworld.2008.375-377