1,591
Views
20
CrossRef citations to date
0
Altmetric
REVIEW

An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation

, , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 19-49 | Received 01 Aug 2022, Accepted 06 Dec 2022, Published online: 05 Jan 2023

References

  • Lood R, Frick IM. Protein-Based Strategies to Identify and Isolate Bacterial Virulence Factors. In: Bacterial Pathogenesis. Springer; 2017:3–15.
  • Bassegoda A, Ivanova K, Ramon E, Tzanov T. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol. 2018;102(5):2075–2089.
  • Diard M, Hardt WD. Evolution of bacterial virulence. FEMS Microbiol Rev. 2017;41(5):679–697.
  • Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8(1):1–10.
  • Banerjee D, Shivapriya PM, Gautam PK, Misra K, Sahoo AK, Samanta SK. A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proce National Acad Sci India Section B. 2019;90(2):243–259.
  • Nordenfelt P, Collin M. Bacterial Pathogenesis: Methods and Protocols. Springer; 2017.
  • Limoli DH, Jones CJ, Wozniak DJ. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. 2015;3(3):29.
  • Hengge R. Targeting bacterial biofilms by the green tea polyphenol EGCG. Molecules. 2019;24(13):2403.
  • Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681.
  • Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96–104. doi:
  • Sahu PK, Iyer PS, Barage SH, Sonawane KD, Chopade BA. Characterization of the algC Gene Expression Pattern in the Multidrug Resistant Acinetobacter baumannii AIIMS 7 and Correlation with Biofilm Development on Abiotic Surface. Sci World J. 2014;2014:1–14.
  • Beloin C, McDougald D. Speciality Grand Challenge for “Biofilms.”. Front Cell Infect Microbiol. 2021;11:99.
  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008;6(1):17–27.
  • Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol. 2015;79(2):208–215.
  • Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics. 2021;10(1):3.
  • O’Toole G, Kaplan HB, Kolter R. Biofilm Formation as Microbial Development. Annu Rev Microbiol. 2000;54(1):49–79.
  • Lin YK, Yang SC, Hsu CY, Sung JT, Fang JY. The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules. 2021;26:21.
  • Singh A, Amod A, Pandey P, et al. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed Mater. 2022;17(2):022003.
  • Silva NBS, Marques LA, Röder DDB. Diagnosis of biofilm infections: current methods used, challenges and perspectives for the future. J Appl Microbiol. 2021;131(5):2148–2160.
  • Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51.
  • Ghai I, Ghai S. Understanding antibiotic resistance via outer membrane permeability. Infect Drug Resist. 2018;11:523–530.
  • Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev. 2014;78:3–13.
  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8(4):251–259.
  • Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;23(5):464–472.
  • Varela MF, Stephen J, Lekshmi M, et al. Bacterial resistance to antimicrobial agents. Antibiotics. 2021;10(5):593.
  • Ronin D, Boyer J, Alban N, Natoli RM, Johnson A, Kjellerup BV. Current and novel diagnostics for orthopedic implant biofilm infections: a review. APMIS. 2022;130(2):59–81.
  • Wannigama DL, Hurst C, Pearson L, et al. Simple fluorometric-based assay of antibiotic effectiveness for Acinetobacter baumannii biofilms. Sci Rep. 2019;9(1):1–14.
  • Wannigama DL, Hurst C, Hongsing P, et al. A rapid and simple method for routine determination of antibiotic sensitivity to biofilm populations of Pseudomonas aeruginosa. Ann Clin Microbiol Antimicrob. 2020;19(1):1–8.
  • Sedarat Z, Taylor-Robinson AW. Biofilm formation by pathogenic bacteria: applying a staphylococcus aureus model to appraise potential targets for therapeutic intervention. Pathogens. 2022;11:4.
  • Gedefie A, Demsis W, Ashagrie M, et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infect Drug Resist. 2021;14:3711–3719.
  • Goldman L. Pseudomonas and Related Gram-Negative Bacillary Infections. In: Falagas ME, Rafailidis PI, editors. Goldman-Cecil Medicine. 26th ed. Elsevier, Inc; 2020:1931–1936.
  • Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39.
  • Hu Y, Liu C, Wang Q, et al. Emergence and expansion of a carbapenem-resistant pseudomonas aeruginosa clone are associated with plasmid-borne bla kpc-2 and virulence-related genes. mSystems. 2021;6(3):e00154–21.
  • Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens. 2014;3(3):596–632.
  • Thöming JG, Tomasch J, Preusse M, et al. Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. Npj Biofilms and Microbiomes. 2020;6(1):1–13.
  • Huszczynski SM, Lam JS, Khursigara CM. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens. 2020;9:1.
  • Wang S, Xiang D, Tian F, Ni M. Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses. J Med Microbiol. 2021;70:4.
  • Ciofu O, Tolker-Nielsen T. Tolerance and resistance of pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa Can escape antibiotics. Front Microbiol. 2019;10:913.
  • Liang Z, Rybtke M, Kragh KN, et al. Transcription of the Alginate Operon in Pseudomonas aeruginosa Is Regulated by c-di-GMP. Microbiol Spectr. 2022;10(4):e00675–22.
  • Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol (Praha). 2018;63(4):413–432.
  • Yan S, Wu G. Can biofilm be reversed through quorum sensing in pseudomonas aeruginosa? Front Microbiol. 2019;10:1582.
  • Muhammad MH, Idris AL, Fan X, et al. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol. 2020;11:928.
  • Abdelraheem WM, Abdelkader AE, Mohamed ES, Mohammed MS. Detection of biofilm formation and assessment of biofilm genes expression in different Pseudomonas aeruginosa clinical isolates. Meta Gene. 2020;23:100646.
  • Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019;24(1):350–359.
  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A. 2013;110(44):17981–17986.
  • Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;21(22):1–25.
  • Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol. 2022;24(6):2630–2656.
  • Pye CC, Yu AA, Weese JS. Evaluation of biofilm production by Pseudomonas aeruginosa from canine ears and the impact of biofilm on antimicrobial susceptibility in vitro. Vet Dermatol. 2013;24(4):446–e99.
  • Miryala SK, Anbarasu A, Ramaiah S. Systems biology studies in Pseudomonas aeruginosa PA01 to understand their role in biofilm formation and multidrug efflux pumps. Microb Pathog. 2019;136:103668.
  • Milivojevic D, Šumonja N, Medić S, et al. Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. Pathog Dis. 2018;76:4.
  • Orsi GB, Scorzolini L, Franchi C, Mondillo V, Rosa G, Venditti M. Hospital-acquired infection surveillance in a neurosurgical intensive care unit. J Hosp Infect. 2006;64(1):23–29.
  • Azzopardi EA, Azzopardi E, Camilleri L, et al. Gram Negative Wound Infection in Hospitalised Adult Burn Patients-Systematic Review and Metanalysis-. McDowell A. PLoS One. 2014;9(4):e95042.
  • Watkins K, Unnikrishnan M. New strategies and targets for antibacterial discovery. In: Drug Discovery Targeting Drug-Resistant Bacteria. Elsevier; 2020:249–272.
  • Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 2020;18(8):e3000805.
  • Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The mechanisms of disease caused by Acinetobacter baumannii. Front Microbiol. 2019;10:1601.
  • Geisinger E, Isberg RR. Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis. 2017;215(suppl_1):S9–S17.
  • Galac MR, Snesrud E, Lebreton F, et al. A diverse panel of clinical Acinetobacter baumannii for research and development. Antimicrob Agents Chemother. 2020;64(10):e00840–20.
  • Salmani A, Shakerimoghaddam A, Pirouzi A, Delkhosh Y, Eshraghi M. Correlation between biofilm formation and antibiotic susceptibility pattern in Acinetobacter baumannii MDR isolates retrieved from burn patients. Gene Rep. 2020;21:100816.
  • Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol. 2017;7:55.
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev. 2017;30(1):409–447.
  • Choi CH, Lee EY, Lee YC, et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol. 2005;7(8):1127–1138.
  • Kim SW, Choi CH, Moon DC, et al. Serum resistance of Acinetobacter baumannii through the binding of factor H to outer membrane proteins. FEMS Microbiol Lett. 2009;301(2):224–231.
  • Lee JS, Choi CH, Kim JW, Lee JC. Acinetobacter baumannii outer membrane protein a induces dendritic cell death through mitochondrial targeting. J Microbiol. 2010;48(3):387–392.
  • Fernández-Cuenca F, Smani Y, Gómez-Sánchez MC, et al. Attenuated virulence of a slow-growing pandrug-resistant Acinetobacter baumannii is associated with decreased expression of genes encoding the porins CarO and OprD-like. Int J Antimicrob Agents. 2011;38(6):548–549.
  • Smani Y, McConnell MJ, Pachón J. Role of Fibronectin in the Adhesion of Acinetobacter baumannii to Host Cells. PLoS One. 2012;7(4):e33073.
  • Rumbo C, Tomás M, Moreira EF, et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun. 2014;82(11):4666–4680.
  • Wang N, Ozer EA, Mandel MJ, Hauser AR. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio. 2014;5(3):1163–1177.
  • Huang W, Yao Y, Wang S, et al. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii. Sci Rep. 2016;6(1):1–12.
  • Smani Y, Dominguez-Herrera J, Pachon J. Association of the Outer Membrane Protein Omp33 With Fitness and Virulence of Acinetobacter baumannii. J Infect Dis. 2013;208(10):1561–1570.
  • Schweppe DK, Harding C, Chavez JD, et al. Host-Microbe Protein Interactions during Bacterial Infection. Chem Biol. 2015;22(11):1521–1530.
  • Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA Protein Plays a Role in Biofilm Formation on Abiotic Surfaces and in the Interaction of This Pathogen with Eukaryotic Cells. Infect Immun. 2009;77(8):3150–3160.
  • Lees-Miller RG, Iwashkiw JA, Scott NE, et al. A common pathway for O -linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol. 2013;89(5):816–830.
  • Russo TA, Luke NR, Beanan JM, et al. The K1 Capsular Polysaccharide of Acinetobacter baumannii Strain 307-0294 Is a Major Virulence Factor. Infect Immun. 2010;78(9):3993–4000.
  • Iwashkiw JA, Seper A, Weber BS, et al. Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation. PLoS Pathog. 2012;8(6):e1002758.
  • Geisinger E, Isberg RR. Antibiotic Modulation of Capsular Exopolysaccharide and Virulence in Acinetobacter baumannii. PLoS Pathog. 2015;11(2):e1004691.
  • Luke NR, Sauberan SL, Russo TA, et al. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect Immun. 2010;78(5):2017–2023.
  • Lin L, Tan B, Pantapalangkoor P, et al. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. Pirofski L anne, ed. mBio. 2012;3:5.
  • McQueary CN, Kirkup BC, Si Y, et al. Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility. J Microbiol. 2012;50(3):434–443.
  • McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013;37(2):130–155.
  • Beceiro A, Moreno A, Fernández N, et al. Biological Cost of Different Mechanisms of Colistin Resistance and Their Impact on Virulence in Acinetobacter baumannii. Antimicrob Agents Chemother. 2014;58(1):518–526.
  • Erridge C, Moncayo-Nieto OL, Morgan R, Young M, Poxton IR. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via Toll-like receptor 4 signalling. J Med Microbiol. 2007;56(2):165–171.
  • Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular Mechanisms of Ethanol-Induced Pathogenesis Revealed by RNA-Sequencing. Roy CR. PLoS Pathog. 2010;6(4):e1000834.
  • Jacobs AC, Hood I, Boyd KL, et al. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun. 2010;78(5):1952–1962.
  • Stahl J, Bergmann H, Göttig S, Ebersberger I, Averhoff B. Acinetobacter baumannii virulence is mediated by the concerted action of three phospholipases D. PLoS One. 2015;10(9):e0138360.
  • Fiester SE, Arivett BA, Schmidt RE, et al. Iron-Regulated phospholipase C Activity contributes to the cytolytic activity and virulence of Acinetobacter baumannii. PLoS One. 2016;11(11):e0167068.
  • Johnson TL, Waack U, Smith S, Mobley H, Sandkvist M. Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness. J Bacteriol. 2016;198(4):711–719.
  • Kwon SO, Gho YS, Lee JC, Kim S. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol Lett. 2009;297(2):150–156.
  • Jin JS, Kwon SO, Moon DC, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein a via outer membrane vesicles. PLoS One. 2011;6(2):e17027.
  • Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal Transfer of the OXA-24 Carbapenemase Gene via Outer Membrane Vesicles: a New Mechanism of Dissemination of Carbapenem Resistance Genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(7):3084–3090.
  • Moon DC, Choi CH, Lee JH, et al. Acinetobacter baumannii outer membrane protein a modulates the biogenesis of outer membrane vesicles. J Microbiol. 2012;50(1):155–160.
  • Jun SH, Lee JH, Kim BR, et al. Acinetobacter baumannii Outer Membrane Vesicles Elicit a Potent Innate Immune Response via Membrane Proteins. PLoS One. 2013;8(8):e71751.
  • Li ZT, Zhang RL, Bi XG, et al. Outer membrane vesicles isolated from two clinical Acinetobacter baumannii strains exhibit different toxicity and proteome characteristics. Microb Pathog. 2015;81:46–52.
  • Nho JS, Jun SH, Oh MH, et al. Acinetobacter nosocomialis secretes outer membrane vesicles that induce epithelial cell death and host inflammatory responses. Microb Pathog. 2015;81:39–45.
  • Nairn BL, Lonergan ZR, Wang J, et al. The Response of Acinetobacter baumannii to Zinc Starvation. Cell Host Microbe. 2016;19(6):826–836.
  • Hood MI, Mortensen BL, Moore JL, et al. Identification of an Acinetobacter baumannii Zinc Acquisition System that Facilitates Resistance to Calprotectin-mediated Zinc Sequestration. PLoS Pathog. 2012;8(12):e1003068.
  • Ali HM, Salem MZM, El-Shikh MS, Megeed AA, Alogaibi YA, Talea IA. Investigation of the Virulence Factors and Molecular Characterization of the Clonal Relations of Multidrug-Resistant Acinetobacter baumannii Isolates. J AOAC Int. 2017;100(1):152–158.
  • Zimbler DL, Park TM, Arivett BA, et al. Stress response and virulence functions of the Acinetobacter baumannii NfuA Fe-S scaffold protein. J Bacteriol. 2012;194(11):2884–2893.
  • Penwell WF, Arivett BA, Actis LA. The Acinetobacter baumannii entA Gene Located Outside the Acinetobactin Cluster Is Critical for Siderophore Production, Iron Acquisition and Virulence. PLoS One. 2012;7(5):e36493.
  • Gaddy JA, Actis LA, Arivett BA, Mcconnell MJ, Rafael LR, Pachón J. Role of Acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun. 2012;80(3):1015–1024.
  • Juttukonda LJ, Chazin WJ, Skaar EP, Sperandio V. Acinetobacter baumannii coordinates urea metabolism with metal import to resist host-mediated metal limitation. mBio. 2016;7(5):5. doi:
  • Elhosseiny NM, El-Tayeb OM, Yassin AS, Lory S, Attia AS. The secretome of Acinetobacter baumannii ATCC 17978 type II secretion system reveals a novel plasmid encoded phospholipase that could be implicated in lung colonization. Int J Med Microbiol. 2016;306(8):633–641.
  • Harding CM, Kinsella RL, Palmer LD, Skaar EP, Feldman MF. Medically Relevant Acinetobacter Species Require a Type II Secretion System and Specific Membrane-Associated Chaperones for the Export of Multiple Substrates and Full Virulence. PLoS Pathog. 2016;12:1.
  • Carruthers MD, Nicholson PA, Tracy EN, Munson RS. Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition. PLoS One. 2013;8(3):e59388.
  • Jones CL, Clancy M, Honnold C, et al. Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii with Enhanced Virulence. Clin Infect Dis. 2015;61(2):145–154.
  • Repizo GD, Gagné S, Foucault-Grunenwald ML, et al. Differential Role of the T6SS in Acinetobacter baumannii Virulence. PLoS One. 2015;10(9):e0138265.
  • Ruiz FM, Santillana E, Spínola-Amilibia M, Torreira E, Culebras E, Romero A. Crystal Structure of Hcp from Acinetobacter baumannii: a Component of the Type VI Secretion System. PLoS One. 2015;10(6):e0129691.
  • Bentancor L, Routray A, Bozkurt-Guzel C, Camacho-Peiro A, Pier GB, Maira-Litrán T. Evaluation of the Trimeric Autotransporter Ata as a Vaccine Candidate against Acinetobacter baumannii Infections. Infect Immun. 2012;80(10):3381–3388.
  • Russo TA, MacDonald U, Beanan JM, et al. Penicillin‐Binding Protein 7/8 Contributes to the Survival of Acinetobacter baumannii In Vitro and In Vivo. J Infect Dis. 2009;199(4):513–521.
  • Sechi LA, Karadenizli A, Deriu A, et al. PER-1 type beta-lactamase production in Acinetobacter baumannii is related to cell adhesion. Medical Science Monitor. 2004;10(6):180–184.
  • Koenigs A, Stahl J, Averhoff B, et al. CipA of Acinetobacter baumannii Is a Novel Plasminogen Binding and Complement Inhibitory Protein. J Infect Dis. 2016;213(9):1388–1399.
  • Koenigs A, Zipfel PF, Kraiczy P. Translation elongation factor Tuf of Acinetobacter baumannii is a plasminogen-binding protein. PLoS One. 2015;10(7):e0134418.
  • Aranda J, Bardina C, Beceiro A, et al. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol. 2011;193(15):3740–3747.
  • Gebhardt MJ, Gallagher LA, Jacobson RK, et al. Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. mBio. 2015;6:6.
  • Liu D, Liu ZS, Hu P, et al. Characterization of surface antigen protein 1 (SurA1) from Acinetobacter baumannii and its role in virulence and fitness. Vet Microbiol. 2016;186:126–138.
  • Elhosseiny NM, Amin MA, Yassin AS, Attia AS. Acinetobacter baumannii universal stress protein A plays a pivotal role in stress response and is essential for pneumonia and sepsis pathogenesis. Int J Med Microbiol. 2015;305(1):114–123.
  • Cerqueira GM, Kostoulias X, Khoo C, et al. A Global Virulence Regulator in Acinetobacter baumannii and Its Control of the Phenylacetic Acid Catabolic Pathway. J Infect Dis. 2014;210(1):46–55.
  • Bhuiyan MS, Ellett F, Murray GL, et al. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proc Natl Acad Sci U S A. 2016;113(34):9599–9604.
  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology. 2003;149(12):3473–3484.
  • Tomaras AP, Flagler MJ, Dorsey CW, Gaddy JA, Actis LA. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology. 2008;154(11):3398–3409.
  • Tipton KA, Rather PN. An ompR-envZ Two-Component System Ortholog Regulates Phase Variation, Osmotic Tolerance, Motility, and Virulence in Acinetobacter baumannii Strain AB5075. J Bacteriol. 2017;199:3.
  • Subashchandrabose S, Smith S, DeOrnellas V, et al. Acinetobacter baumannii Genes Required for Bacterial Survival during Bloodstream Infection. mSphere. 2016;1:1.
  • Srinivasan VB, Venkataramaiah M, Mondal A, Rajamohan G. Functional Characterization of AbeD, an RND-Type Membrane Transporter in Antimicrobial Resistance in Acinetobacter baumannii. PLoS One. 2015;10(10):e0141314.
  • Álvarez-fraga L, Pérez A, Rumbo-Feal S, et al. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells. Virulence. 2016;7(4):443–455.
  • Altınok Ö, Boral B, Ergin A, Eser ÖK. Existence of Biofilm and Biofilm-Associated Virulence Genes in Multi-Drug Resistant Invasive Acinetobacter baumannii Isolates. Mikrobiyol Bul. 2020;54(1):40–49.
  • Colquhoun JM, Rather PN. Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis. Front Cell Infect Microbiol. 2020;10:253.
  • Srisakul S, Wannigama DL, Higgins PG, et al. Overcoming addition of phosphoethanolamine to lipid A mediated colistin resistance in Acinetobacter baumannii clinical isolates with colistin-sulbactam combination therapy. Sci Rep. 2022;12:1.
  • Toltzis P. Staphylococcus epidermidis and Other Coagulase-Negative Staphylococci. In: Principles and Practice of Pediatric Infectious Diseases. Elsevier; 2018:706–712.e4.
  • Taylor TA, Unakal CG. Staphylococcus Aureus. StatPearls Publishing; 2020.
  • Silva V, Capelo JL, Igrejas G, Poeta P. Molecular Epidemiology of Staphylococcus aureus Lineages in Wild Animals in Europe: a Review. Antibiotics. 2020;9:3.
  • Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins. 2018;10:6.
  • Quave CL, Horswill AR. Flipping the switch: tools for detecting small molecule inhibitors of staphylococcal virulence. Front Microbiol. 2014;5:706.
  • Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm. 2019;10(8):1231–1241.
  • Luther MK, Parente DM, Caffrey AR, et al. Clinical and Genetic Risk Factors for Biofilm-Forming Staphylococcus aureus. Antimicrob Agents Chemother. 2018;62:5.
  • Zapotoczna M, O’Neill E, O’Gara JP. Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS Pathog. 2016;12(7):e1005671.
  • Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA – biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J. 2020;18:3324–3334.
  • Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62.
  • Foster TJ. Surface Proteins of Staphylococcus aureus. Microbiol Spectr. 2019;7:4.
  • Otto M. Staphylococcal Biofilms. Microbiol Spectr. 2018;6(4):658.
  • Enany S, Alexander LC. The Rise of Virulence and Antibiotic Resistance in Staphylococcus Aureus. InTech; 2017.
  • Reffuveille F, Josse J, Vallé Q, Mongaret C, Gangloff SC. Staphylococcus aureus Biofilms and their Impact on the Medical Field. In: The Rise of Virulence and Antibiotic Resistance in Staphylococcus Aureus. InTech; 2017:187–214.
  • Ruhal R, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res. 2021;251:126829.
  • Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81(1):7–11.
  • Krzyściak P, Chmielarczyk A, Pobiega M, Romaniszyn D, Wójkowska‐Mach J. Acinetobacter baumannii isolated from hospital‐acquired infection: biofilm production and drug susceptibility. APMIS. 2017;125(11):1017–1026.
  • Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015;34(5):877–886.
  • Sharma G, Sharma S, Sharma P, et al. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol. 2016;121(2):309–319.
  • Gupta S, Kumar P, Rathi B, et al. Targeting of Uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Sci Rep. 2021;11:1.
  • Law SKK, Tan HS. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiol Res. 2022;260:127032.
  • Kaushik V, Tiwari M, Joshi R, Tiwari V. Therapeutic strategies against potential antibiofilm targets of multidrug‐resistant Acinetobacter baumannii. J Cell Physiol. 2022;237(4):2045–2063.
  • Trifan A, Luca SV, Greige-Gerges H, Miron A, Gille E, Aprotosoaie AC. Recent advances in tackling microbial multidrug resistance with essential oils: combinatorial and nano-based strategies. Crit Rev Microbiol. 2020;46(3):338–357.
  • Gentile V, Frangipani E, Bonchi C, Minandri F, Runci F, Visca P. Iron and Acinetobacter baumannii Biofilm formation. Pathogens. 2014;3(3):704–719.
  • Upmanyu K, Singh R. Factors mediating Acinetobacter baumannii biofilm formation: opportunities for developing therapeutics. Curr Res Microb Sci. 2022;3:100131.
  • Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics. 2020;9(2):59.
  • Dieltjens L, Appermans K, Lissens M, et al. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat Commun. 2020;11(1):1–11.
  • Shao L, Dong Y, Chen X, Xu X, Wang H. Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. In: Using Combined Ultrasound and Disinfectants. Ultrason Sonochem; 2020:69.
  • Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms. 2022;10:2.
  • Tursi SA, Puligedda RD, Szabo P, et al. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat Commun. 2020;11(1):1007.
  • Steenackers H, Hermans K, Vanderleyden J, de Keersmaecker SCJ. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int. 2012;45(2):502–531.
  • Cadavid E, Echeverri F. The search for natural inhibitors of biofilm formation and the activity of the autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884. Biomolecules. 2019;9(2):49.
  • Santiago AJ, Burgos-Garay L. Bacteriophage treatment of carbapenemase-producing Klebsiella pneumoniae in a multispecies biofilm: a potential biocontrol strategy for healthcare facilities. AIMS Microbiol. 2020;6(1):43–63.
  • Chhibber S, Gondil VS, Sharma S, et al. Approach for Combating Klebsiella pneumoniae Biofilm Using Histidine Functionalized Silver Nanoparticles. Front Microbiol. 2017;8:1104.
  • Kaplan JB. Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs. 2009;32(9):545–554.
  • Tosato MG, Schilardi P. Synergistic effect of carboxypterin and methylene blue applied to antimicrobial photodynamic therapy against mature biofilm of Klebsiella pneumoniae. Heliyon. 2020;6(3):e03522.
  • Bilici K, Atac N, Muti A, et al. Broad spectrum antibacterial photodynamic and photothermal therapy achieved with indocyanine green loaded SPIONs under near infrared irradiation. Biomater Sci. 2020;8(16):4616–4625.
  • Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens. 2014;3(3):743–758.
  • Muhammad MH, Idris AL, Fan X, et al. Beyond Risk: bacterial Biofilms and Their Regulating Approaches. Front Microbiol. 2020;11(928):548.
  • Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol. 2019;309(1):1–12.
  • Le KY, Park MD, Otto M. Immune Evasion Mechanisms of Staphylococcus epidermidis Biofilm Infection. Front Microbiol. 2018;9:359.
  • Chen W, Xie TT, Zeng H. Formation, Antibiotic Resistance, and Control Strategies of Staphylococcus Epidermidis Biofilm. IntechOpen; 2020.
  • Bhattacharyya P, Agarwal B, Goswami M, Maiti D, Baruah S, Tribedi P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek. 2018;111(1):89–99.
  • Wang J, Song M, Pan J, et al. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J Cell Mol Med. 2018;22(12):6228–6237.
  • Yadav MK, Go YY, Chae SW, Song JJ. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro. PLoS One. 2015;10(10):e0139238.
  • Lu L, Hu W, Tian Z, et al. Developing natural products as potential anti-biofilm agents. Chin Med. 2019;14(1):11.
  • Martínez OF, Cardoso MH, Ribeiro SM, Franco OL. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol. 2019;9:74.
  • Bazaid AS, Aldarhami A, Patel M, et al. The Antimicrobial Effects of Saudi Sumra Honey against Drug Resistant Pathogens: phytochemical Analysis, Antibiofilm, Anti-Quorum Sensing, and Antioxidant Activities. Pharmaceuticals. 2022;15(10):1212.
  • Ghosh S, Lahiri D, Nag M, et al. Phytocompound Mediated Blockage of Quorum Sensing Cascade in ESKAPE Pathogens. Antibiotics. 2022;11(1):61.
  • Singkham-In U, Higgins PG, Wannigama DL, Hongsing P, Chatsuwan T. Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. PLoS One. 2020;15(12):e0243082.
  • Bandeira junior G, Sutili FJ, Gressler LT, et al. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria. J Appl Microbiol. 2018;125(3):655–665.
  • Mishra R, Panda AK, de Mandal S, Shakeel M, Bisht SS, Khan J. Natural Anti-biofilm Agents: strategies to Control Biofilm-Forming Pathogens. Front Microbiol. 2020;11:566325.
  • Singh VK, Mishra A, Jha B. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2017;7:337.
  • Reen FJ, Gutiérrez-Barranquero JA, Parages ML, Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol. 2018;102(5):2063–2073.
  • Zhang J, Rui X, Wang L, Guan Y, Sun X, Dong M. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control. 2014;42:125–131.
  • Batohi N, Lone SA, Marimani M, Wani MY, Al-Bogami AS, Ahmad A. Citral and its derivatives inhibit quorum sensing and biofilm formation in Chromobacterium violaceum. Arch Microbiol. 2021;203(4):1451–1459.
  • Azeredo J, García P, Drulis-Kawa Z. Targeting biofilms using phages and their enzymes. Curr Opin Biotechnol. 2021;68:251–261.
  • Ingle AP, Wagh S, Biswas J, Mondal M, Feitosa CM, Rai M. Phyto-Fabrication of Different Nanoparticles and Evaluation of their Antibacterial and Anti-Biofilm Efficacy. Curr Nanosci. 2020;16(6):1002–1015.
  • Mogha K. Biofilm - A threat to dairy industry. Ind J Dairy Sci. 2014;67(6):459–466.
  • Girennavar B, Cepeda ML, Soni KA, et al. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol. 2008;125(2):204–208.
  • Bruni R, Barreca D, Protti M, et al. Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest. Molecules. 2019;24(11):2163.
  • D’Almeida RE, Molina RRDI, Viola CM, et al. Comparison of seven structurally related coumarins on the inhibition of Quorum sensing of Pseudomonas aeruginosa and Chromobacterium violaceum. Bioorg Chem. 2017;73:37–42.
  • Snoussi M, Noumi E, Hajlaoui H, et al. Phytochemical Profiling of Allium subhirsutum L. Aqueous Extract with Antioxidant, Antimicrobial, Antibiofilm, and Anti-Quorum Sensing Properties: in Vitro and In Silico Studies. Plants. 2022;11(4):495.
  • Awadelkareem AM, Al-Shammari E, Elkhalifa AO, et al. Anti-Adhesion and Antibiofilm Activity of Eruca sativa Miller Extract Targeting Cell Adhesion Proteins of Food-Borne Bacteria as a Potential Mechanism: combined In Vitro-In Silico Approach. Plants. 2022;11(5):610.
  • de Moura DF, Rocha TA, De melo Barros D, et al. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch Microbiol. 2021;203(7):4303–4311.
  • Emam M, Abdel-Haleem DR, Salem MM, et al. Phytochemical Profiling of Lavandula coronopifolia Poir. Aerial Parts Extract and Its Larvicidal, Antibacterial, and Antibiofilm Activity Against Pseudomonas aeruginosa. Molecules. 2021;26(6):1710.
  • Yang M, Meng F, Gu W, et al. Effects of Natural Products on Bacterial Communication and Network-Quorum Sensing. Biomed Res Int. 2020;2020:8638103.
  • Ackermann HW. Bacteriophage observations and evolution. Res Microbiol. 2003;154(4):245–251.
  • Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13(6):278–284.
  • Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66.
  • Vandamme EJ. Phage therapy and phage control: to be revisited urgently!! J Chem Technol Biotechnol. 2014;89(3):329–333.
  • Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: a Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25(2):219–232.
  • Fernández L, Gutiérrez D, García P, Rodríguez A. The perfect bacteriophage for therapeutic applications—A quick guide. Antibiotics. 2019;8(3):126.
  • Hermoso JA, García JL, García P. Taking Aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol. 2007;10(5):461–472.
  • Ferriol-González C, Domingo-Calap P. Phages for Biofilm Removal. Antibiotics. 2020;9(5):268.
  • Vázquez R, García P. Synergy Between Two Chimeric Lysins to Kill Streptococcus pneumoniae. Front Microbiol. 2019;10:1251.
  • Łubowska N, Piechowicz L. Staphylococcus aureus biofilm and the role of bacteriophages in its eradication. Postepy Hig Med Dosw. 2018;72:101–107.
  • Topka-Bielecka G, Dydecka A, Necel A, et al. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics. 2021;10(2):1–21.
  • Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–2151.
  • Loessner MJ. Bacteriophage endolysins—current state of research and applications. In: Current Opinion in Microbiology. Vol. 8. Elsevier; 2005:480–487.
  • Young R, Wang IN, Roof WD. Phages will out: strategies of host cell lysis. Trends Microbiol. 2000;8(3):120–128.
  • Hasan M, Ahn J. Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics. 2022;11:7.
  • Pei R, Lamas-Samanamud GR. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes. Appl Environ Microbiol. 2014;80(17):5340–5348.
  • Silpe JE, Bassler BL. Phage-encoded LuxR-type receptors responsive to host-produced bacterial quorum-sensing autoinducers. mBio. 2019;10(2):87.
  • Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: a Review. Pharmaceutics. 2022;14(2):427.
  • Luong T, Salabarria AC, Roach DR. Phage Therapy in the Resistance Era: where Do We Stand and Where Are We Going? Clin Ther. 2020;42(9):1659–1680.
  • Esteban PP, Alves DR, Enright MC, et al. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions. Biotechnol Prog. 2014;30(4):932–944.
  • Esteban PP, Jenkins ATA, Arnot TC. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential. Colloids Surf B Biointerfaces. 2016;139:87–94.
  • Yu P, Wang Z, Marcos-Hernandez M, et al. Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study. Environ Sci Nano. 2019;6(12):3539–3550.
  • Liu ZH, Chiang MT, Lin HY. Lytic Bacteriophage as a Biomaterial to Prevent Biofilm Formation and Promote Neural Growth. Tissue Eng Regen Med. 2022;1–14.
  • Koshi E, Mohan A, Rajesh S, Philip K. Antimicrobial photodynamic therapy: an overview. J Indian Soc Periodontol. 2011;15(4):323.
  • Polat E, Kang K. Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines. 2021;9(6):584.
  • Dascalu LM, Moldovan M, Prodan D, et al. Assessment and Characterization of Some New Photosensitizers for Antimicrobial Photodynamic Therapy (aPDT). Materials. 2020;13(13):3012.
  • Carrera ET, Dias HB, Corbi SCT, et al. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review. Laser Phys. 2016;26(12):123001.
  • Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol. 2018;9:1299.
  • Cieplik F, Deng D, Crielaard W, et al. Antimicrobial photodynamic therapy–what we know and what we don’t. Crit Rev Microbiol. 2018;44(5):571–589.
  • Tavares LJ, de Avila ED, Klein MI, Panariello BHDD, Spolidório DMPP, Pavarina AC. Antimicrobial photodynamic therapy alone or in combination with antibiotic local administration against biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. J Photochem Photobiol B. 2018;188:135–145.
  • Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 2018;27(4):293–302.
  • Perez-Laguna V, Gilaberte Y, Millán-Lou MI, et al. A combination of photodynamic therapy and antimicrobial compounds to treat skin and mucosal infections: a systematic review. Photochem Photobiol Sci. 2019;18(5):1020–1029.
  • Chibebe junior J, Fuchs BB, Sabino CP, et al. Photodynamic and Antibiotic Therapy Impair the Pathogenesis of Enterococcus faecium in a Whole Animal Insect Model. PLoS One. 2013;8(2):e55926.
  • Dubey AK, Kumar Gupta V, Kujawska M, et al. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. J Nanostructure Chem. 2022;1–32.
  • Louwen R, Staals RHJ, Endtz HP, van Baarlen P, van der Oost J. The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria. Microbiol Mol Biol Rev. 2014;78(1):74–88.
  • Gong T, Zeng J, Tang B, Zhou X. CRISPR-Cas systems in oral microbiome: from immune defense to physiological regulation. Mol Oral Microbiol. 2020;35(2):41–48.
  • Ho C CRISPR gene-editing controversy shows old ideas about East and West still prevail. The Conversation; 2016. Available from: https://theconversation.com/crispr-gene-editing-controversy-shows-old-ideas-about-east-and-west-still-prevail-66918. Accessed December 15, 2022.
  • Yadav N, Narang J, Chhillar AK, Rana JS. CRISPR: a new paradigm of theranostics. Nanomedicine. 2021;33:102350.
  • Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371(1707):20150496.
  • Wiedenheft B, van Duijn E, Bultema J, et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A. 2011;108(25):10092–10097.
  • Paul B, Montoya G. CRISPR-Cas12a: functional overview and applications. Biomed J. 2020;43(1):8–17.
  • Zuberi A, Misba L, Khan AU. CRISPR interference (CRISPRi) inhibition of luxS gene expression in E. coli: an approach to inhibit biofilm. Front Cell Infect Microbiol. 2017;7:214.
  • Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011;2(5):435–444.
  • Zuberi A, Ahmad N, Khan AU. CRISPRi induced suppression of fimbriae gene (fimH) of a Uropathogenic Escherichia coli: an approach to inhibit microbial biofilms. Front Immunol. 2017;8:1552.
  • Noirot-Gros MF, Forrester S, Malato G, Larsen PE, Noirot P. CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Sci Rep. 2019;9(1):1–14.
  • Hegde S, Nilyanimit P, Kozlova E, et al. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2019;13(12):e0007883.
  • Moon S, Kim DY, Ko JH, Kim YS. Recent advances in the CRISPR genome editing tool set. Exp Mol Med. 2019;51(11):1–11.
  • Makabenta JM, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19(1):23–36.
  • Abdalla SSI, Katas H, Azmi F, Busra MFM. Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: mechanism of Action, Toxicity and Current Status. Curr Drug Deliv. 2020;17(2):88–100.
  • Geissel FJ, Platania V, Gogos A, et al. Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. J Colloid Interface Sci. 2022;608:3141–3150.
  • Mohammad MA, Faris Taufeq FY. Roles of chitosan in synthesis, antibacterial and anti-biofilm properties of bionano silver and gold. RSC Adv. 2022;12(30):19297–19312.
  • Luzala MM, Muanga CK, Kyana J, et al. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials. 2022;12(11):1841.
  • Al-Azawi M, Hadi SM, Mohammed C. Synthesis of silica nanoparticles via green approach by using hot aqueous extract of Thuja orientalis leaf and their effect on biofilm formation. Iraqi J Agric Sci. 2019;50:245–255.
  • Shehabeldine AM, Amin BH, Hagras FA, et al. Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Appl Biochem Biotechnol. 2022;1–19.
  • Maksoud MIAA, El-Sayyad GS, Ashour AH, et al. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb Pathog. 2019;127:144–158.
  • Takamiya AS, Monteiro DR, Gorup LF, et al. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Mater Sci Eng C Mater Biol Appl. 2021;118.
  • Dias HB, Bernardi MIB, Bauab TM, Hernandes AC. Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins. Dent Mater. 2019;35(2):e36–e46.
  • Al-Wrafy FA, Al-Gheethi AA, Ponnusamy SK, Noman EA, Fattah SA. Nanoparticles approach to eradicate bacterial biofilm-related infections: a critical review. Chemosphere. 2022;288:132603.
  • Qais FA, Khan MS, Ahmad I. Nanoparticles as Quorum Sensing Inhibitor: prospects and Limitations. In: Biotechnological Applications of Quorum Sensing Inhibitors. Springer; 2018:227–244.
  • Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8(1):1–16.
  • Darabpour E, Kashef N, Amini SM, Kharrazi S, Djavid GE. Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles. J Drug Deliv Sci Technol. 2017;37:134–140.
  • Wan T, Pan Q, Ping Y. Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv. 2021;7(11):eabe2888.
  • Barhoum A, García-Betancourt ML, Jeevanandam J, et al. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: history, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials. 2022;12(2):177.
  • Kiani MH, Imran M, Raza A, Shahnaz G. Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. DARU J Pharm Sci. 2020;28(1):319–332.
  • Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-Based Nanoparticles: antibacterial Mechanisms and Biomedical Application. Microorganisms. 2022;10(9):1778.
  • Jang J, Lee JM. Development of Antibiofilm Nanocomposites: ag/Cu Bimetallic Nanoparticles Synthesized on the Surface of Graphene Oxide Nanosheets. ACS Appl Mater Interfaces. 2020;12(32):35826–35834.
  • Khalid HF, Tehseen B, Sarwar Y, et al. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties. J Hazard Mater. 2019;364:441–448.
  • El-Batal AI, Al-Hazmi NE, Farrag AA, et al. Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: effect of UV-illumination, and membrane leakage reaction mechanism. Microb Pathog. 2022;164:105440.
  • Padmavathi AR, Sriyutha Murthy P, Das A, Nishad PA, Pandian R, Rao TS. Copper oxide nanoparticles as an effective anti-biofilm agent against a copper tolerant marine bacterium, Staphylococcus lentus. Biofouling. 2019;35(9):1007–1025.
  • Rónavári A, Igaz N, Adamecz DI, et al. Green Silver and Gold Nanoparticles: biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules. 2021;26(4):844.
  • Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci. 2019;20(15):3806.
  • Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem. 2019;24(7):929–941.
  • Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem. 2020;8:3256.
  • Xu M, Yim W, Zhou J, et al. The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: spanning Various Domains. IEEE Nanotechnol Mag. 2021;15(4):8–28.
  • Ng KK, Zheng G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. Chem Rev. 2015;115(19):11012–11042.
  • Gonzalez Gomez A, Hosseinidoust Z. Liposomes for Antibiotic Encapsulation and Delivery. ACS Infect Dis. 2020;6(5):896–908.
  • Chauhan SB, Gupta V. Recent Advances in Liposome. Res J Pharm Technol. 2020;13(4):2051–2056.
  • Alavi SE, Koohi Moftakhari Esfahani, M, Raza, A, Adelnia, H, Ebrahimi Shahmabad, H. PEG-grafted liposomes for enhanced antibacterial and antibiotic activities: an in vivo study. NanoImpact. 2022;25:100384.
  • Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem. 2021;64(24):17601–17626.
  • Allemailem KS, Almatroudi A, Alsahli MA, et al. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech. 2020;10:12.
  • Das A, Konyak PM, Das A, Dey SK, Saha C. Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial. Heliyon. 2019;5:8.
  • Ghandhariyoun N, Jaafari MR, Nikoofal-Sahlabadi S, Taghdisi SM, Moosavian SA. Reducing Doxorubicin resistance in breast cancer by liposomal FOXM1 aptamer: in vitro and in vivo. Life Sci. 2020;262.
  • Zhou C, You T, Jang H, et al. Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores. Sensors. 2020;20:11.
  • Hallan SS, Marchetti P, Bortolotti D, et al. Design of Nanosystems for the Delivery of Quorum Sensing Inhibitors: a Preliminary Study. Molecules. 2020;25(23):5655.
  • Ibaraki H, Kanazawa T, Chien WYY, et al. The effects of surface properties of liposomes on their activity against Pseudomonas aeruginosa PAO-1 biofilm. J Drug Deliv Sci Technol. 2020;57:101754.
  • Ayllon M, Abatchev G, Bogard A, Whiting R, Hobdey SE, Fologea D. Liposomes prevent in vitro hemolysis induced by streptolysin o and lysenin. Membranes. 2021;11(5):364.
  • Kumar S, Paliya BS, Singh BN. Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microb Pathog. 2022;170:105678.
  • da Silveira SA, Perez A. Liposomes as novel anti-infectives targeting bacterial virulence factors? Expert Rev Anti Infect Ther. 2015;13(5):531–533.
  • Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother. 2019;109:2561–2572.
  • Mauricio MD, Guerra-Ojeda S, Marchio P, et al. Nanoparticles in medicine: a focus on vascular oxidative stress. Oxid Med Cell Longev. 2018;2018:879.