1,978
Views
10
CrossRef citations to date
0
Altmetric
REVIEW

Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis

, , , , , , , , & ORCID Icon show all
Pages 155-178 | Received 10 Aug 2022, Accepted 20 Dec 2022, Published online: 06 Jan 2023

References

  • Khan M, Khan A. Basic facts of mastitis in dairy animals: a review. Pakistan Veterinary j. 2006;26(4):204.
  • Ashraf A, Imran M. Diagnosis of bovine mastitis: from laboratory to farm. Trop Anim Health Prod. 2018;50(6):1193–1202. doi:10.1007/s11250-018-1629-0
  • Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci. 2008;86(suppl_13):57–65. doi:10.2527/jas.2007-0302
  • Bogni C, Odierno L, Raspanti C, et al., War against mastitis: current concepts on controlling bovine mastitis pathogens, Science against microbial pathogens: Communicafing current research and technological advances; 2011. 483–494.
  • Keane OM, Budd KE, Flynn J, McCoy F. Pathogen profile of clinical mastitis in Irish milk‐recording herds reveals a complex aetiology. Veterinary Record. 2013;173(1):17.
  • Karimuribo ED, Fitzpatrick J, Bell C, et al. Clinical and subclinical mastitis in smallholder dairy farms in Tanzania: risk, intervention and knowledge transfer. Prev Vet Med. 2006;74(1):84–98. doi:10.1016/j.prevetmed.2006.01.009
  • De Graaf T, Dwinger R. Estimation of milk production losses due to sub-clinical mastitis in dairy cattle in Costa Rica. Prev Vet Med. 1996;26(3–4):215–222. doi:10.1016/0167-5877(95)00560-9
  • Schepers J, Dijkhuizen A. The economics of mastitis and mastitis control in dairy cattle: a critical analysis of estimates published since 1970. Prev Vet Med. 1991;10(3):213–224. doi:10.1016/0167-5877(91)90005-M
  • Batavani R, Asri S, Naebzadeh H. The effect of subclinical mastitis on milk composition in dairy cows. Iranian J Veterinary Res. 2007;8(3):205–211.
  • Azooz M, El-Wakeel SA, Yousef H. Financial and economic analyses of the impact of cattle mastitis on the profitability of Egyptian dairy farms. Veterinary World. 2020;13(9):1750. doi:10.14202/vetworld.2020.1750-1759
  • McInerney J, Howe K, Schepers J. A framework for the economic analysis of disease in farm livestock. Prev Vet Med. 1992;13(2):137–154. doi:10.1016/0167-5877(92)90098-Z
  • Romero J, Benavides E, Meza C. Assessing financial impacts of subclinical mastitis on Colombian dairy farms. Front Veterinary Sci. 2018;5:273. doi:10.3389/fvets.2018.00273
  • Martí-de Olives A, Peris C, Molina MP. Effect of subclinical mastitis on the yield and cheese-making properties of ewe’s milk. Small Ruminant Res. 2020;184:106044. doi:10.1016/j.smallrumres.2019.106044
  • Nielsen C. Economic impact of mastitis in dairy cows. Agr Sci. 2009;29:1652–6880.
  • Hoque MN, Das ZC, Talukder AK, Alam MS, Rahman ANMA. Different screening tests and milk somatic cell count for the prevalence of subclinical bovine mastitis in Bangladesh. Trop Anim Health Prod. 2015;47(1):79–86. doi:10.1007/s11250-014-0688-0
  • Tieri M, Ghelfi F, Vitale M, et al. Whole grain consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr. 2020;71(6):668–677. doi:10.1080/09637486.2020.1715354
  • Cavero-Redondo I, Alvarez-Bueno C, Sotos-Prieto M, Gil A, Martinez-Vizcaino V, Ruiz JR. Milk and dairy product consumption and risk of mortality: an overview of systematic reviews and meta-analyses. Adv Nutrition. 2019;10(suppl_2):S97–S104. doi:10.1093/advances/nmy128
  • Szilagyi A, Ishayek N. Lactose intolerance, dairy avoidance, and treatment options. Nutrients. 2018;10(12):1994. doi:10.3390/nu10121994
  • Zecconi A. Contagious mastitis control program: the Staphylococcus aureus case.J Dairy Sci. 2006:548.
  • Sharif A, Muhammad G. Mastitis control in dairy animals. Pakistan Vet J. 2009;29(3):145–148.
  • Liu H, Meng L, Dong L, Zhang Y, Wang J, Zheng N. Prevalence, Antimicrobial Susceptibility, and Molecular Characterization of Escherichia coli Isolated From Raw Milk in Dairy Herds in Northern China. Front Microbiol. 2021;12:548.
  • Martins L, Gonçalves JL, Leite RF, Tomazi T, Rall VL, Santos MV. Association between antimicrobial use and antimicrobial resistance of Streptococcus uberis causing clinical mastitis. J Dairy Sci. 2021;104(11):12030–12041. doi:10.3168/jds.2021-20177
  • Feng Y, Qi W. Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China. J Integrative Agr. 2016;15(12):2842–2847. doi:10.1016/S2095-3119(16)61368-0
  • Kar D, Bandyopadhyay S, Bhattacharyya D, et al. Molecular and phylogenetic characterization of multidrug resistant extended spectrum beta-lactamase producing Escherichia coli isolated from poultry and cattle in Odisha, India, Infection. Genetics Evolution. 2015;29:82–90. doi:10.1016/j.meegid.2014.11.003
  • Bandyopadhyay S, Banerjee J, Bhattacharyya D, et al. Genomic identity of fluoroquinolone-resistant bla CTX-M-15-Type ESBL and pMAmpC β-lactamase producing Klebsiella pneumoniae from Buffalo milk India. Microbial Drug Resistance. 2018;24(9):1345–1353. doi:10.1089/mdr.2017.0368
  • Sharma S, Khan A, Dahiya DK, Jain J, Sharma V. Prevalence, identification and drug resistance pattern of Staphylococcus aureus and Escherichia coli isolated from raw milk samples of Jaipur city of Rajasthan. J Pure Appl Microbiol. 2015;9(1):341–348.
  • Verma H, Rawat S, Sharma N, Jaiswal V, Singh R, Harshit V. Prevalence, bacterial etiology and antibiotic susceptibility pattern of bovine mastitis in Meerut. J Entomol Zool Stud. 2018;6(1):706–709.
  • Bandyopadhyay S, Samanta I, Bhattacharyya D, et al. Co-infection of methicillin-resistant Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus and extended spectrum β-lactamase producing Escherichia coli in bovine mastitis–three cases reported from India. Veterinary Quarterly. 2015;35(1):56–61. doi:10.1080/01652176.2014.984365
  • Bhattacharyya D, Banerjee J, Bandyopadhyay S, et al. First report on vancomycin-resistant Staphylococcus aureus in bovine and caprine milk. Microbial Drug Resistance. 2016;22(8):675–681. doi:10.1089/mdr.2015.0330
  • Saini V, McClure JT, Scholl D, DeVries T, Barkema H. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J Dairy Sci. 2012;95(4):1921–1929. doi:10.3168/jds.2011-5065
  • Jones GM, Bailey TL. Understanding the basics of mastitis. 2009.
  • Harmon R. Physiology of mastitis and factors affecting somatic cell counts. J Dairy Sci. 1994;77(7):2103–2112. doi:10.3168/jds.S0022-0302(94)77153-8
  • Gröhn Y, Wilson DJ, González R, et al. Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J Dairy Sci. 2004;87(10):3358–3374. doi:10.3168/jds.S0022-0302(04)73472-4
  • Schukken YH, Günther J, Fitzpatrick J, et al. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol. 2011;144(3–4):270–289. doi:10.1016/j.vetimm.2011.08.022
  • Gurjar A, Gioia G, Schukken Y, Welcome F, Zadoks R, Moroni P. Molecular diagnostics applied to mastitis problems on dairy farms. Veterinary Clin. 2012;28(3):565–576.
  • Dos Reis CBM, Barreiro JR, Mestieri L. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows. BMC Vet Res. 2013;9(1):1–7. doi:10.1186/1746-6148-9-1
  • Virdis S, Scarano C, Cossu F, Spanu V, Spanu C, De Santis EPL. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis. Vet Med Int. 2010;2010:1–6. doi:10.4061/2010/517060
  • Shamila-Syuhada AK, Rusul G, Wan-Nadiah WA, Chuah L-O. Prevalence and Antibiotics Resistance of Staphylococcus aureus Isolates Isolated from Raw Milk Obtained from Small-Scale Dairy Farms in Penang, Malaysia. Pakistan Veterinary J. 2016;36(1):989.
  • Oliszewski R, Nunez de Kairuz M, González de Elias S, Oliver G. Assessment of β-glucuronidase levels in goat’s milk as an indicator of mastitis: comparison with other mastitis detection methods. J Food Prot. 2002;65(5):864–866. doi:10.4315/0362-028X-65.5.864
  • Ashraf A. Imran, Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Animal Health Res Rev. 2020. 21(1):36–49. doi:10.1017/S1466252319000094
  • Abou-Dakn M, Richardt A, Schaefer-Graf U, Wöckel A. Inflammatory breast diseases during lactation: milk stasis puerperal mastitis, abscesses of the breast, and malignant tumors–current and evidence-based strategies for diagnosis and therapy. Breast Care. 2010;5(1):33–37. doi:10.1159/000272223
  • Amir LH, Cullinane M, Garland SM, et al. The role of micro-organisms (Staphylococcus aureus and Candida albicans) in the pathogenesis of breast pain and infection in lactating women: study protocol. BMC Pregnancy Childbirth. 2011;11(1):1–11. doi:10.1186/1471-2393-11-54
  • Betzold CM. An update on the recognition and management of lactational breast inflammation. J Midwifery Women’s Health. 2007;52(6):595–605. doi:10.1016/j.jmwh.2007.08.002
  • Osterman KL, Rahm V-A. Lactation mastitis: bacterial cultivation of breast milk, symptoms, treatment, and outcome. J Human Lactation. 2000;16(4):297–302. doi:10.1177/089033440001600405
  • Cullinane M, Amir LH, Donath SM, et al. Determinants of mastitis in women in the CASTLE study: a cohort study. BMC Fam Pract. 2015;16(1):1–8. doi:10.1186/s12875-015-0396-5
  • Mediano P, Fernández L, Rodríguez JM, Marín M. Case–control study of risk factors for infectious mastitis in Spanish breastfeeding women. BMC Pregnancy Childbirth. 2014;14(1):1–14. doi:10.1186/1471-2393-14-195
  • Amir LH, Forster DA, Lumley J, McLachlan H. A descriptive study of mastitis in Australian breastfeeding women: incidence and determinants. BMC Public Health. 2007;7(1):1–10. doi:10.1186/1471-2458-7-62
  • Angelopoulou A, Field D, Ryan CA, Stanton C, Hill C, Ross RP. The microbiology and treatment of human mastitis. Med Microbiol Immunol. 2018;207(2):83–94. doi:10.1007/s00430-017-0532-z
  • Amir LH; A.o.B.M.P. Committee. ABM clinical protocol# 4: mastitis, revised March 2014. Breastfeeding Med. 2014;9(5):239–243. doi:10.1089/bfm.2014.9984
  • Rizzo M, Gabram S, Staley C, et al. Management of breast abscesses in nonlactating women. Am Surg. 2010;76(3):292–295. doi:10.1177/000313481007600310
  • C.o.H.C.f.U. Women, ACOG Committee Opinion No. 361. Breastfeeding: maternal and infant aspects. Obstet Gynecol. 2007;109(2 Pt 1):479–480. doi:10.1097/00006250-200702000-00064
  • Amir LH, Forster D, McLachlan H, Lumley J. Incidence of breast abscess in lactating women: report from an Australian cohort. BJOG. 2004;111(12):1378–1381. doi:10.1111/j.1471-0528.2004.00272.x
  • Li S, Grant CS, Degnim A, Donohue J. Surgical management of recurrent subareolar breast abscesses: mayo Clinic experience. Am j Surgery. 2006;192(4):528–529. doi:10.1016/j.amjsurg.2006.06.010
  • Bharat A, Gao F, Aft RL, Gillanders WE, Eberlein TJ, Margenthaler JA. Predictors of primary breast abscesses and recurrence. World J Surg. 2009;33(12):2582–2586. doi:10.1007/s00268-009-0170-8
  • Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124(4):823–835. doi:10.1016/j.cell.2006.02.016
  • Copie-Bergman C, Gaulard P, Lavergne-Slove A, et al. Proposal for a new histological grading system for post-treatment evaluation of gastric MALT lymphoma. Gut. 2003;52(11):1656. doi:10.1136/gut.52.11.1656
  • Ditmyer H, Craig L. Mycotic mastitis in three dogs due to Blastomyces dermatitidis. J Am Anim Hosp Assoc. 2011;47(5):356–358. doi:10.5326/JAAHA-MS-5679
  • Murai A, Maruyama S, Nagata M, Yuki M. Mastitis caused by M ycobacterium kansasii infection in a dog. Veterinary Clin Pathol. 2013;42(3):377–381. doi:10.1111/vcp.12056
  • Marti JA, Fernandez S. Clinical approach to mammary gland disease, bsava Manual of canine and feline reproduction and neonatology. BSAVA Lib. 2010;155–165.
  • Eisa MO, Mustafa A. Production systems and dairy production of Sudan camel (Camelus dromedarius): a review. Middle East j Sci Res. 2011;7(2):132–135.
  • Radostits O, Gay C, Hinchchiff K, Constable P. A Text book of the Disease of cattle, sheep, pigs and goats. Bailliere Tindall. 2007;1:215.
  • Jilo K, Galgalo W, Mata W. Camel mastitis: a review. MOJ Eco Environ Sci. 2017;2(5):34.
  • Mazinani M, Rude B. Population, World Production and Quality of Sheep and Goat Products. Am J Animal Veterinary Sci. 2020;15(4):291–299. doi:10.3844/ajavsp.2020.291.299
  • Ferro M, Tedeschi L, Atzori A. The comparison of the lactation and milk yield and composition of selected breeds of sheep and goats. Translational Animal Sci. 2017;1(4):498–506. doi:10.2527/tas2017.0056
  • Contreras A, Sierra D, Sánchez A, et al. Mastitis in small ruminants. Small Ruminant Res. 2007;68(1–2):145–153. doi:10.1016/j.smallrumres.2006.09.011
  • Ruegg PL, Mastitis in small ruminants, American Association of Bovine Practitioners Proceedings of the Annual Conference; 2011. 111–119.
  • Cable CS, Peery K, Fubini SL. Radical mastectomy in 20 ruminants. Veterinary Surgery. 2004;33(3):263–266. doi:10.1111/j.1532-950X.2004.04038.x
  • Ribeiro MG, Lara G, Bicudo SD, et al. An unusual gangrenous goat mastitis caused by Staphylococcus aureus, Clostridium perfringens and Escherichia coli co-infection. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2007;59(3):810–812. doi:10.1590/S0102-09352007000300037
  • Martin C, Hooper B, Armstrong C, Amstutz H. A Clinical and Pathologic Study of Mastitis-Metritis-Agalactia Syndrome of Sows. J Am Vet Med Assoc. 1967;1;1629.
  • Hirsch A, Philipp H, Kleemann R. Investigation on the efficacy of meloxicam in sows with mastitis–metritis–agalactia syndrome. J Vet Pharmacol Ther. 2003;26(5):355–360. doi:10.1046/j.1365-2885.2003.00524.x
  • Gerjets I, Kruse S, Krieter J, Kemper N. Diagnosis of MMA affected sows: bacteriological differentiation, temperature measurement and water intake. Proce Int Vet Pig Soc Congr. 2008:236.
  • Gerjets I, Kemper N. Coliform mastitis in sows: a review. J Swine Health Production. 2009;17(2):97–105.
  • Hellbrügge B, Tölle K-H, Bennewitz J, Henze C, Presuhn U, Krieter J. Genetic aspects regarding piglet losses and the maternal behaviour of sows. Part 2. Genetic relationship between maternal behaviour in sows and piglet mortality. Animal. 2008;2(9):1281–1288. doi:10.1017/S1751731108002516
  • Hühn U, Rehbock F. Prostaglandine contra Umrauschen. Krankhaftem Scheidenausfluss nach der Geburt Paroli bieten dlz agrarmagazin. 1999;50(6):192–196.
  • Kelley KW, Johnson RW, Dantzer R. Immunology discovers physiology. Vet Immunol Immunopathol. 1994;43(1–3):157–165. doi:10.1016/0165-2427(94)90132-5
  • Perkins N, Threlfall W. Mastitis in the mare. Equine Veterinary Educ. 2002;14(S5):99–102. doi:10.1111/j.2042-3292.2002.tb01804.x
  • To T. Inappropriate lactation in a 15-year-old thoroughbred mare. Canadian Veterinary J. 2019;60(4):430.
  • Motta R, Ribeiro M, Langoni H, et al. Study of routine diagnosis methods of mastitis in mares. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2011;63(4):1028–1032. doi:10.1590/S0102-09352011000400034
  • Canisso I, Podico G, Ellerbrock R. Diagnosis and treatment of mastitis in mares. Equine Veterinary Educ. 2021;33(6):320–326. doi:10.1111/eve.13228
  • Tozzi B, Liponi GB, Meucci V, et al. Aflatoxins M1 and M2 in the milk of donkeys fed with naturally contaminated diet. Dairy Sci Technol. 2016;96(4):513–523. doi:10.1007/s13594-016-0285-2
  • Carroccio A, Cavataio F, Montalto G. Intolerance to hydrolysed cow’s milk proteins in infants: clinical characteristics and dietary treatment. Clin Exp Allergy. 2000;30(11):1598–1603. doi:10.1046/j.1365-2222.2000.00925.x
  • Monti G, Bertino E, Muratore MC, et al. Efficacy of donkey’s milk in treating highly problematic cow’s milk allergic children: an in vivo and in vitro study. Pediatric Allergy Immunol. 2007;18(3):258–264. doi:10.1111/j.1399-3038.2007.00521.x
  • Pilla R, Dapra V, Zecconi A, Piccinini R. Hygienic and health characteristics of donkey milk during a follow-up study. J Dairy Res. 2010;77(4):392–397. doi:10.1017/S0022029910000221
  • Wiebe VJ, Howard JP. Pharmacologic advances in canine and feline reproduction. Top Companion Anim Med. 2009;24(2):71–99. doi:10.1053/j.tcam.2008.12.004
  • Jutkowitz LA. Reproductive emergencies. Veterinary Clin. 2005;35(2):397–420.
  • Ververidis H, Mavrogianni V, Fragkou I, et al. Experimental staphylococcal mastitis in bitches: clinical bacteriological, cytological, haematological and pathological features. Vet Microbiol. 2007;124(1–2):95–106. doi:10.1016/j.vetmic.2007.03.029
  • Traas A, O’Connor C. Postpartum emergencies. Int Veterinary Em Critical Care Symposium. 2009;12(1):219–237.
  • Nelson RW, Couto CG. Small Animal Internal Medicine-E-Book. Elsevier Health Sciences; 2019.
  • Hopper K. Pyometra, mastitis and uterine prolapse. Int Veterinary Em Critical Care Symposium. 2003;9–13.
  • Ebert KM, Selgrath JP, DiTullio P, et al. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Bio Technol. 1991;9(9):835–838. doi:10.1038/nbt0991-835
  • Miller M, White A, Boots M. The evolution of host resistance: tolerance and control as distinct strategies. J Theor Biol. 2005;236(2):198–207. doi:10.1016/j.jtbi.2005.03.005
  • Fodor WL, Williams BL, Matis LA, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proce National Acad Sci. 1994;91(23):11153–11157. doi:10.1073/pnas.91.23.11153
  • Saeki K, Matsumoto K, Kinoshita M, et al. Functional expression of a Δ12 fatty acid desaturase gene from spinach in transgenic pigs. Proce National Acad Sci. 2004;101(17):6361–6366. doi:10.1073/pnas.0308111101
  • Reh W, Maga E, Collette N, et al. Hot topic: using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. J Dairy Sci. 2004;87(10):3510–3514. doi:10.3168/jds.S0022-0302(04)73486-4
  • Hammer RE, Pursel VG, Rexroad CE, et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985;315(6021):680–683. doi:10.1038/315680a0
  • Petersen B. Basics of genome editing technology and its application in livestock species. Reproduct Domestic Animals. 2017;52:4–13. doi:10.1111/rda.13012
  • Pellagatti A, Dolatshad H, Valletta S, Boultwood J. Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Arch Toxicol. 2015;89(7):1023–1034. doi:10.1007/s00204-015-1504-y
  • Tait-Burkard C, Doeschl-Wilson A, McGrew MJ, et al. Livestock 2.0–genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 2018;19(1):1–11. doi:10.1186/s13059-018-1583-1
  • Schuhardt V, Schindler CA. Lysostaphin therapy in mice infected with Staphylococcus aureus. J Bacteriol. 1964;88(3):815–816. doi:10.1128/jb.88.3.815-816.1964
  • Ruegg PL. A 100-Year Review: mastitis detection, management, and prevention. J Dairy Sci. 2017;100(12):10381–10397. doi:10.3168/jds.2017-13023
  • Islam M, Rony SA, Rahman MB, et al. Improvement of disease resistance in livestock: application of immunogenomics and CRISPR/Cas9 technology. Animals. 2020;10(12):2236. doi:10.3390/ani10122236
  • Weiss W. A 100-Year Review: from ascorbic acid to zinc—Mineral and vitamin nutrition of dairy cows. J Dairy Sci. 2017;100(12):10045–10060. doi:10.3168/jds.2017-12935
  • Libera K, Konieczny K, Witkowska K, et al. The Association between Selected Dietary Minerals and Mastitis in Dairy Cows—A Review. Animals. 2021;11(8):2330. doi:10.3390/ani11082330
  • Machado V, Bicalho M, Pereira R, et al. Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Veterinary J. 2013;197(2):451–456. doi:10.1016/j.tvjl.2013.02.022
  • Bourne N, Wathes D, Lawrence K, McGowan M, Laven R. The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK. Veterinary J. 2008;177(3):381–387. doi:10.1016/j.tvjl.2007.06.006
  • Smulski S, Gehrke M, Libera K, et al. Effects of various mastitis treatments on the reproductive performance of cows. BMC Vet Res. 2020;16(1):1–10. doi:10.1186/s12917-020-02305-7
  • Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition of the teat canal and intramammary microbiota of dairy cows subjected to antimicrobial dry cow therapy and internal teat sealant. J Dairy Sci. 2018;101(11):10191–10205. doi:10.3168/jds.2018-14858
  • Cameron M, Keefe G, Roy J-P, Stryhn H, Dohoo I, McKenna S. Evaluation of selective dry cow treatment following on-farm culture: milk yield and somatic cell count in the subsequent lactation. J Dairy Sci. 2015;98(4):2427–2436. doi:10.3168/jds.2014-8876
  • Zecconi A, Sesana G, Vairani D, Cipolla M, Rizzi N, Zanini L. Somatic cell count as a decision tool for selective dry cow therapy in Italy. Italian J Animal Sci. 2019;18(1):435–440. doi:10.1080/1828051X.2018.1532328
  • de Magalhães Rodrigues Martins CM, Alves BG, Monteiro CP. Noninferiority field trial for evaluation of efficacy of ciprofloxacin associated with internal teat sealant as dry-off protocol. Trop Anim Health Prod. 2019;51(8):2547–2557. doi:10.1007/s11250-019-01955-6
  • Vasquez A, Nydam D, Foditsch C, et al. Use of a culture-independent on-farm algorithm to guide the use of selective dry-cow antibiotic therapy. J Dairy Sci. 2018;101(6):5345–5361. doi:10.3168/jds.2017-13807
  • Sanford CJ, Keefe GP, Dohoo IR, et al. Efficacy of using an internal teat sealer to prevent new intramammary infections in nonlactating dairy cattle. J Am Vet Med Assoc. 2006;228(10):1565–1573. doi:10.2460/javma.228.10.1565
  • Notcovich S, Williamson N, Flint S, Yapura J, Schukken Y, Heuer C. Effect of bismuth subnitrate on in vitro growth of major mastitis pathogens. J Dairy Sci. 2020;103(8):7249–7259. doi:10.3168/jds.2019-17830
  • Biscarini F, Cremonesi P, Castiglioni B, et al. Trial of Teat-Sealant and Antibiotic Dry-Cow Treatments for Mastitis Prevention Shows Similar Effect on the Healthy Milk Microbiome. Front Veterinary Sci. 2020;7:581. doi:10.3389/fvets.2020.00581
  • McDougall S, Parker K, Weir A, Compton C. Effect of application of an external teat sealant and/or oral treatment with a monensin capsule pre-calving on the prevalence and incidence of subclinical and clinical mastitis in dairy heifers. N Z Vet J. 2008;56(3):120–129. doi:10.1080/00480169.2008.36820
  • Leitner G, Zilberman D, Papirov E, Shefy S. Assessment of acoustic pulse therapy (APT), a non-antibiotic treatment for dairy cows with clinical and subclinical mastitis. PLoS One. 2018;13(7):e0199195. doi:10.1371/journal.pone.0199195
  • Halasa T, Huijps K, Østerås O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Veterinary Quarterly. 2007;29(1):18–31. doi:10.1080/01652176.2007.9695224
  • Hogeveen H, Huijps K, Lam T. Economic aspects of mastitis: new developments. N Z Vet J. 2011;59(1):16–23. doi:10.1080/00480169.2011.547165
  • Dua K. Incidence etiology and estimated economic losses due to mastitis in Punjab and in India-An update. Indian Dairyman. 2001;53(10):41–52.
  • Varshney JP, Naresh R. Evaluation of a homeopathic complex in the clinical management of udder diseases of riverine buffaloes. Homeopathy. 2004;93(1):17–20. doi:10.1016/j.homp.2003.11.007
  • Banal B, Gupta D. Economic analysis of bovine mastitis in India and Punjab-A review. Indian j Dairy Sci. 2009;62(5):337–345.
  • U.o. Glasgow. Potential Biomarkers of Mastitis in Dairy Cattle Milk Identified. University of Glasgow; 2016.
  • He W, Ma S, Lei L, et al. Prevalence, etiology, and economic impact of clinical mastitis on large dairy farms in China. Vet Microbiol. 2020;242:108570. doi:10.1016/j.vetmic.2019.108570
  • Getaneh AM, Mekonnen SA, Hogeveen H. Stochastic bio—economic modeling of mastitis in Ethiopian dairy farms. Prev Vet Med. 2017;138:94–103. doi:10.1016/j.prevetmed.2017.01.014
  • Das D, Panda S, Jena B, Sahoo A. Economic impact of subclinical and clinical mastitis in Odisha, India. Int J Curr Microbiol App Sci. 2018;7(03):3651–3654. doi:10.20546/ijcmas.2018.703.422
  • Rathod P, Shivamurty V, Desai AR. Economic Losses due to Subclinical Mastitis in Dairy Animals: a Study in Bidar District of Karnataka. Indian J Veterinary Sci Biotechnol. 2017;13(01):37–41. doi:10.21887/ijvsbt.v13i01.8732
  • Beyene B, Tolosa T. Epidemiology and financial impact of bovine mastitis in an animal production and research center and smallholder dairy farms in Horo Guduru Wollega Zone, Western Ethiopia. J Dairy Vet Anim Res. 2017;5(4):144–151. doi:10.15406/jdvar.2017.05.00152
  • Muthusamy S, The Problem-Mastitis; 2019. Available from: https://www.researchgate.net/publication/333719258_The_Problem_Mastitis. Accessed December 20, 2022.
  • Burman P. Mastitis: expert calls for early detection. Business Line. 2002;2:548.
  • Bardhan D. Estimates of economic losses due to clinical mastitis in organized dairy farms. Indian J Dairy Sci. 2013;66(2):168–172.
  • Dhanda MR, Sethi M. Investigations of mastitis in India. Indian Council Agr Res. 1962.
  • Krishnamoorthy P, Goudar AL, Suresh KP, Roy P. Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta-analysis. Res Vet Sci. 2021;136:561.
  • Abebe R, Hatiya H, Abera M, Megersa B, Asmare K. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet Res. 2016;12(1):1–11. doi:10.1186/s12917-016-0905-3
  • Abrahmsén M, Persson Y, Kanyima BM, Båge R. Prevalence of subclinical mastitis in dairy farms in urban and peri-urban areas of Kampala, Uganda. Trop Anim Health Prod. 2014;46(1):99–105. doi:10.1007/s11250-013-0455-7
  • Sanotharan N, Pagthinathan M, Nafees M. Prevalence of bovine subclinical mastitis and its association with bacteria and risk factors in milking cows of Batticaloa District in Sri Lanka. Int J Sci Res Innovative Tech. 2016;3(6):2313–3759.
  • Rabbani A, Samad M. Host determinants based comparative prevalence of subclinical mastitis in lactating Holstein-Friesian cross cows and Red Chittagong cows in Bangladesh. Bangladesh J Veterinary Med. 2010;8(1):17–21. doi:10.3329/bjvm.v8i1.7397
  • Bangar YC, Singh B, Dohare AK, Verma MR. A systematic review and meta-analysis of prevalence of subclinical mastitis in dairy cows in India. Trop Anim Health Prod. 2015;47(2):291–297. doi:10.1007/s11250-014-0718-y
  • Khan A, Muhammad G. Quarter-wise comparative prevalence of mastitis in buffaloes and crossbred cows. Pakistan Veterinary J. 2005;25(1):9–12.
  • Shrivastava N, Sharma V, Nayak A, et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus (MRSA) mastitis in dairy cattle in Jabalpur, Madhya Pradesh. J Animal Res. 2017;7(1):77–84. doi:10.5958/2277-940X.2017.00011.0
  • Sharun K, Dhama K, Tiwari R, et al. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly. 2021;41(1):107–136. doi:10.1080/01652176.2021.1882713
  • Zigo F, Vasil M, Ondrašovičová S, Výrostková J, Bujok J, Pecka-Kielb E. Maintaining Optimal Mammary Gland Health and Prevention of Mastitis. Front Veterinary Sci. 2021;8:69. doi:10.3389/fvets.2021.607311
  • Smith KL, Todhunter D, Schoenberger P. Environmental mastitis: cause, prevalence, prevention. J Dairy Sci. 1985;68(6):1531–1553. doi:10.3168/jds.S0022-0302(85)80993-0
  • Parker K, Compton C, Anniss F, Weir A, Heuer C, McDougall S. Subclinical and clinical mastitis in heifers following the use of a teat sealant precalving. J Dairy Sci. 2007;90(1):207–218. doi:10.3168/jds.S0022-0302(07)72622-X
  • Berry E, Hillerton J. The effect of an intramammary teat seal on new intramammary infections. J Dairy Sci. 2002;85(10):2512–2520. doi:10.3168/jds.S0022-0302(02)74334-8
  • Golder H, Hodge A, Lean I. Effects of antibiotic dry-cow therapy and internal teat sealant on milk somatic cell counts and clinical and subclinical mastitis in early lactation. J Dairy Sci. 2016;99(9):7370–7380. doi:10.3168/jds.2016-11114
  • Moroni P, Daryl N, Paula O, et al. Diseases of the teats and udder. 2018.
  • Ismail ZB. Mastitis vaccines in dairy cows: recent developments and recommendations of application. Veterinary World. 2017;10(9):1057. doi:10.14202/vetworld.2017.1057-1062
  • Rainard P, Gilbert FB, Germon P, Foucras G. Invited review: a critical appraisal of mastitis vaccines for dairy cows. J Dairy Sci. 2021;104(10):10427–10448. doi:10.3168/jds.2021-20434
  • C.P. Limited. Chimertech Private Limited; 2022. Available from: https://www.chimertech.com/. Accessed December 20, 2022.
  • Thangadurai R, Rengaraj S, Sivakumar C. Management of Bovine Sub Clinical Mastitis with TANUVAS MASTI GUARD. Biotica Res Today. 2020;2(8):752–754.
  • Baipaywad P, Mektrirat R, Manaspon C. Preparation and characterization of gallic acid-loaded PLGA hydrogel as teat sealant for preventing mastitis in dry cows. J Applied Pharm Sci. 2022;12(11):030–037.
  • Galdhar C, Roy S. Recent trends in therapeutic management of mastitis. J Remount Veterinary Corps. 2003;42(1):5–11.
  • Rees A, Fischer-Tenhagen C, Heuwieser W. Udder firmness as a possible indicator for clinical mastitis. J Dairy Sci. 2017;100(3):2170–2183. doi:10.3168/jds.2016-11940
  • Ganguly S, Trivedi S, Patil S, Das O, Gohil B. Recent Research Trends in Veterinary Sciences and Animal Husbandry. Int J Med. 2018:2:548.
  • Kalmus P, Simojoki H, Pyörälä S, Taponen S, Holopainen J, Orro T. Milk haptoglobin, milk amyloid A, and N-acetyl-β-d-glucosaminidase activity in bovines with naturally occurring clinical mastitis diagnosed with a quantitative PCR test. J Dairy Sci. 2013;96(6):3662–3670. doi:10.3168/jds.2012-6177
  • Nirala NR, Harel Y, Lellouche J-P, Shtenberg G. Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles. J Nanobiotechnology. 2020;18(1):1–10. doi:10.1186/s12951-019-0569-9
  • Kovačić M, Samardžija M, Đuričić D, et al. Paraoxonase-1 activity and lipid profile in dairy cows with subclinical and clinical mastitis. J Applied Animal Res. 2019;47(1):1–4. doi:10.1080/09712119.2018.1555090
  • Turk R, Piras C, Kovačić M, et al. Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis. J Proteomics. 2012;75(14):4412–4428. doi:10.1016/j.jprot.2012.05.021
  • Fox L, Adams D. The Ability of the Enzyme‐Linked Immunosorbent Assay to Detect Antibody against Staphylococcus aureus in Milk following Experimental Intramammary Infection. J Veterinary Med Series B. 2000;47(7):517–526. doi:10.1046/j.1439-0450.2000.00379.x
  • Chakraborty S, Dhama K, Tiwari R, et al. Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population—a review. Veterinary Quarterly. 2019;39(1):76–94. doi:10.1080/01652176.2019.1642546
  • Coşkun G, Aytekin İ. Early Detection of Mastitis by Using Infrared Thermography in Holstein-Friesian Dairy Cows Via Classification and Regression Tree (CART) Analysis. Selcuk J Agr Food Sci. 2021;35(2):115–124.
  • Annamanedi M, Sheela P, Sundareshan S, et al. Molecular fingerprinting of bovine mastitis-associated Staphylococcus aureus isolates from India. Sci Rep. 2021;11(1):1–15. doi:10.1038/s41598-021-94760-x
  • Martins SA, Martins VC, Cardoso FA, et al. Biosensors for on-farm diagnosis of mastitis. Front Bioengineering Biotechnol. 2019;7:186. doi:10.3389/fbioe.2019.00186
  • Coatrini-Soares A, Coatrini-Soares J, Neto MP, et al. Microfluidic E-tongue to diagnose bovine mastitis with milk samples using Machine learning with Decision Tree models. Chem Eng J. 2023;451:138523. doi:10.1016/j.cej.2022.138523
  • Hoe F, Ruegg PL. Opinions and practices of Wisconsin dairy producers about biosecurity and animal well-being. J Dairy Sci. 2006;89(6):2297–2308. doi:10.3168/jds.S0022-0302(06)72301-3
  • Oliveira L, Ruegg P. Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin. J Dairy Sci. 2014;97(9):5426–5436. doi:10.3168/jds.2013-7756
  • Barkema H, Schukken Y, Zadoks R. Invited review: the role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci. 2006;89(6):1877–1895. doi:10.3168/jds.S0022-0302(06)72256-1
  • Gomes F, Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol. 2016;72(4):377–382. doi:10.1007/s00284-015-0958-8
  • Kwiatek M, Parasion S, Mizak L, Gryko R, Bartoszcze M, Kocik J. Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch Virol. 2012;157(2):225–234. doi:10.1007/s00705-011-1160-3
  • Coffey A, Meaney W, Fitzgerald G, Ross R. Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol. 2005;41(3):274–279. doi:10.1111/j.1472-765X.2005.01762.x
  • Leite R, Gonçalves J, Peti A, Figueiró F, Moraes L, Santos M. Antimicrobial activity of crude extracts from actinomycetes against mastitis pathogens. J Dairy Sci. 2018;101(11):10116–10125. doi:10.3168/jds.2018-14454
  • Pellegrino M, Berardo N, Giraudo J, Nader-Macías M, Bogni C. Bovine mastitis prevention: humoral and cellular response of dairy cows inoculated with lactic acid bacteria at the dry-off period. Benef Microbes. 2017;8(4):589–596. doi:10.3920/BM2016.0194
  • Kober AH, Saha S, Islam MA, et al. Immunomodulatory Effects of Probiotics: a Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms. 2022;10(11):2255. doi:10.3390/microorganisms10112255
  • Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv. 2020;27(1):292–308. doi:10.1080/10717544.2020.1724209
  • Kher MN, Sheth NR, Bhatt VD. In vitro antibacterial evaluation of Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis. Anim Biotechnol. 2019;30(2):151–158. doi:10.1080/10495398.2018.1451752
  • Ranjith D, Nisha A, Nair S, Litty M, Rahman M, Juliet S. Evaluation of analgesic and anti-inflammatory activity of herbal formulation used for mastitis in animals. Int J App Sci Eng. 2018;6(1):37–48.
  • Almeida RA, Kerro-Dego O, Prado ME, et al. Protective effect of anti-SUAM antibodies on Streptococcus uberis mastitis. Vet Res. 2015;46(1):1–6. doi:10.1186/s13567-015-0271-3
  • Leitner G, Pinchasov Y, Morag E, et al. Immunotherapy of mastitis. Vet Immunol Immunopathol. 2013;153(3–4):209–216. doi:10.1016/j.vetimm.2013.02.017
  • FAO. Impact of mastitis in small scale dairy production systems. Rome: Animal Production and Health Working Paper; 2014. Available from: http://www.fao.org/3/i3377e/i3377e.pdf. Accessed December 20, 2022.
  • DeGraves FJ, Fetrow J. Economics of mastitis and mastitis control, The Veterinary Clinics of North America. Food Animal Practice. 1993;9(3):421–434. doi:10.1016/S0749-0720(15)30611-3
  • Huijps K, Lam TJ, Hogeveen H. Costs of mastitis: facts and perception. J Dairy Res. 2008;75(1):113. doi:10.1017/S0022029907002932
  • Kivaria F. Epidemiological Studies on Bovine Mastitis in Smallholder Dairy Herds in the Dar Es Salaam Region. Tanzania, Utrecht University; 2006.
  • Borchers M, Bewley J. An assessment of producer precision dairy farming technology use, prepurchase considerations, and usefulness. J Dairy Sci. 2015;98(6):4198–4205. doi:10.3168/jds.2014-8963
  • Aghamohammadi M, Haine D, Kelton DF, et al. Herd-level mastitis-associated costs on Canadian dairy farms. Front Veterinary Sci. 2018;5:100. doi:10.3389/fvets.2018.00100
  • Fernando R, Rindsig R, Spahr S. Electrical conductivity of milk for detection of mastitis. J Dairy Sci. 1982;65(4):659–664. doi:10.3168/jds.S0022-0302(82)82245-5
  • Ondiek J, Ogore P, Kemboi F. Clinical mastitis gives off-flavor and reduces quality of milk in smallholder goat farms. Int J Curr Microbiol Appl Sci. 2018;7(1):2387–2396. doi:10.20546/ijcmas.2018.701.287
  • Qayyum A, Khan JA, Hussain R, et al. Molecular characterization of Staphylococcus aureus isolates recovered from natural cases of subclinical mastitis in Cholistani cattle and their antibacterial susceptibility. Pakistan J Agr Sci. 2016;53(4);548.
  • Hussein HA, Abd El-Razik KAE-H, Gomaa AM, Elbayoumy MK, Abdelrahman KA, Hosein HI. Milk amyloid A as a biomarker for diagnosis of subclinical mastitis in cattle. Veterinary World. 2018;11(1):34. doi:10.14202/vetworld.2018.34-41
  • Mansor R, Mullen W, Albalat A, et al. A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics. 2013;85:89–98. doi:10.1016/j.jprot.2013.04.027
  • Patil M, Nagvekar A, Ingole S, Bharucha S, Palve V. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in Buffalo. Veterinary World. 2015;8(3):363. doi:10.14202/vetworld.2015.363-366
  • Ferronatto JA, Ferronatto TC, Schneider M, et al. Diagnosing mastitis in early lactation: use of Somaticell®, California mastitis test and somatic cell count. Italian J Animal Sci. 2018;17(3):723–729. doi:10.1080/1828051X.2018.1426394
  • Rossi R, Amarante A, Correia L, et al. Diagnostic accuracy of Somaticell, California Mastitis Test, and microbiological examination of composite milk to detect Streptococcus agalactiae intramammary infections. J Dairy Sci. 2018;101(11):10220–10229. doi:10.3168/jds.2018-14753
  • Godden S, Royster E, Timmerman J, Rapnicki P, Green H. Evaluation of an automated milk leukocyte differential test and the California Mastitis Test for detecting intramammary infection in early-and late-lactation quarters and cows. J Dairy Sci. 2017;100(8):6527–6544. doi:10.3168/jds.2017-12548
  • Nagasawa Y, Kiku Y, Sugawara K, et al. Rapid Staphylococcus aureus Detection From Clinical Mastitis Milk by Colloidal Gold Nanoparticle-Based Immunochromatographic Strips. Front Veterinary Sci. 2020;6:504. doi:10.3389/fvets.2019.00504
  • Kiku Y, Nagasawa Y, Sugawara K, et al. Evaluation of a rapid coliform detection kit from clinical mastitis milk using colloidal gold nanoparticle–based immunochromatographic strips. J Veterinary Med Sci. 2021;1:21–0185.
  • Sinha R, Bhakat M, Mohanty T, et al. Infrared thermography as non-invasive technique for early detection of mastitis in dairy animals-A review. Asian J Dairy Food Res. 2018;37(1):1–6.
  • Zaninelli M, Redaelli V, Luzi F, et al. First evaluation of infrared thermography as a tool for the monitoring of udder health status in farms of dairy cows. Sensors. 2018;18(3):862. doi:10.3390/s18030862
  • Chinnappan R, Al Attas S, Kaman WE, Bikker FJ, Zourob M. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk. Anal Biochem. 2017;523:58–64. doi:10.1016/j.ab.2017.02.009
  • Van Altena S, De Klerk B, Hettinga K, et al. A proteomics-based identification of putative biomarkers for disease in bovine milk. Vet Immunol Immunopathol. 2016;174:11–18. doi:10.1016/j.vetimm.2016.04.005
  • Abdelmegid S, Murugaiyan J, Abo-Ismail M, Caswell JL, Kelton D, Kirby GM. Identification of host defense-related proteins using label-free quantitative proteomic analysis of milk whey from cows with Staphylococcus aureus subclinical mastitis. Int J Mol Sci. 2018;19(1):78. doi:10.3390/ijms19010078
  • Royster E, Godden S, Goulart D, Dahlke A, Rapnicki P, Timmerman J. Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for identification of common mastitis pathogens in milk. J Dairy Sci. 2014;97(6):3648–3659. doi:10.3168/jds.2013-7748
  • Ferreira JC, Gomes MS, Bonsaglia EC, et al. Comparative analysis of four commercial on-farm culture methods to identify bacteria associated with clinical mastitis in dairy cattle. PLoS One. 2018;13(3):e0194211. doi:10.1371/journal.pone.0194211
  • Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagacé J. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol. 2001;39(7):2584–2589. doi:10.1128/JCM.39.7.2584-2589.2001
  • Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48(1):1–22. doi:10.1186/s13567-017-0418-5
  • Barreiro JR, Gonçalves JL, Braga PAC, Dibbern AG, Eberlin MN, Dos Santos MV. Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. J Dairy Sci. 2017;100(4):2928–2934. doi:10.3168/jds.2016-11741
  • Klaas I, Zadoks R. An update on environmental mastitis: challenging perceptions. Transbound Emerg Dis. 2018;65:166–185. doi:10.1111/tbed.12704
  • Bu R-E, Wang J-L, Wu J-H, Xilin G-W, Chen J-L, Wang H. Indirect enzyme-linked immunosorbent assay method based on Streptococcus agalactiae rSip-Pgk-FbsA fusion protein for detection of bovine mastitis. Pol J Vet Sci. 2017;20(2):355–362. doi:10.1515/pjvs-2017-0043