528
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Anti-Biofilm Activity and Mechanism of Apigenin-7-O-Glucoside Against Staphylococcus aureus and Escherichia coli

, , , , , , & ORCID Icon show all
Pages 2129-2140 | Received 22 Aug 2022, Accepted 22 Jan 2023, Published online: 11 Apr 2023

References

  • Zhang YB, Liu XY, Wang YF, et al. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control. 2016;59:282–289. doi:10.1016/j.foodcont.2015.05.032
  • Kubota H, Senda S, Nomura N, et al. Biofilm Formation by Lactic Acid Bacteria and Resistance to Environmental Stress. J Biosci Bioeng. 2008;106:381–386. doi:10.1263/jbb.106.381
  • Hossain MI, Rahaman Mizan MF, Toushik SH, et al. Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control. 2022;135:108796. doi:10.1016/j.foodcont.2021.108796
  • Somers EB, Johnson ME, Wong ACL. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment. J Dairy Sci. 2001;84:1926–1936. doi:10.3168/jds.S0022-0302(01)74634-6
  • Kirtonia K, Salauddin M, Bharadwaj KK, et al. Bacteriocin: a new strategic antibiofilm agent in food industries. Biocatalysis Agr Biotechnol. 2021;36:102141. doi:10.1016/j.bcab.2021.102141
  • Prateeksha SK, Singh BN. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Sci Rep-UK. 2019;9:548.
  • Kirtonia K, Salauddin M, Bharadwaj KK, et al. Bacteriocin: a new strategic antibiofilm agent in food industries. Biocatal Agr Biotech. 2021;36.
  • Hossain MI, Mizan MFR, Toushik SH, et al. p Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control. 2022;1:135.
  • Frederick MR, Kuttler C, Hense BA, et al. A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theor Biol Med Model. 2011;8. doi:10.1186/1742-4682-8-8
  • Liu F, Jin P, Gong H, et al. Antibacterial and antibiofilm activities of thyme oil against foodborne multiple antibiotics-resistant Enterococcus faecalis. Poult Sci. 2020;99:5127–5136. doi:10.1016/j.psj.2020.06.067
  • Liu S, Cao S, Guo J, et al. Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. Nanoscale. 2018;10:19603–19611. doi:10.1039/C8NR04064H
  • Ponnusamy K, Paul D, Kweon JH. Inhibition of Quorum Sensing Mechanism and Aeromonas hydrophila Biofilm Formation by Vanillin. Environ Eng Sci. 2009;26:1359–1363. doi:10.1089/ees.2008.0415
  • Rashmi M, Meena H, Meena C, et al. Anti-quorum sensing and antibiofilm potential of Alternaria alternata, a foliar endophyte of Carica papaya, evidenced by QS assays and in-silico analysis. Fungal Biol. 2018;122:998–1012. doi:10.1016/j.funbio.2018.07.003
  • Anil S, Ellepola AN, Samaranayake LP. The impact of chlorhexidine gluconate on the relative cell surface hydrophobicity of oral Candida albicans. Oral Dis. 2001;7:119–122. doi:10.1034/j.1601-0825.2001.70210.x
  • Zammuto V, Rizzo MG, Spanò A, et al. In vitro evaluation of antibiofilm activity of crude extracts from macroalgae against pathogens relevant in aquaculture. Aquaculture. 2022;549:737729. doi:10.1016/j.aquaculture.2021.737729
  • Villain M, Simon S, Bourven I, et al. The use of a new mobile phase, with no multivalent cation binding properties, to differentiate extracellular polymeric substances (EPS), by size exclusion chromatography (SEC), from biomass used for wastewater treatment. Process Biochemistry. 2010;45:1415–1421. doi:10.1016/j.procbio.2010.05.018
  • da Silva EP, De Martinis ECP. Current knowledge and perspectives on biofilm formation: the case of Listeria monocytogenes. Appl Microbiol Biotechnol. 2013;97:957–968. doi:10.1007/s00253-012-4611-1
  • Di Bonaventura G, Stepanovic S, Picciani C, et al. Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol (Praha). 2007;52:86–90. doi:10.1007/BF02932144
  • Ren X, Tuo Y, Li M, et al. Effects of Environmental Factors on Biofilm Formation by Lactobacillus pentosus. Trans Chine Soc Agr Machinery. 2014;45:230.
  • Li CC, Jiang CY, Jing HJ, et al. Separation of phenolics from peony flowers and their inhibitory activities and action mechanism on bacterial biofilm. Appl Microbiol Biotechnol. 2020;104:4321–4332. doi:10.1007/s00253-020-10540-z
  • Shi XM, Zhu XN. Biofilm formation and food safety in food industries. Trends Food Sci Tech. 2009;20:407–413. doi:10.1016/j.tifs.2009.01.054
  • Toushik SH, Park J-H, Kim K, et al. Antibiofilm efficacy of Leuconostoc mesenteroides J.27-derived postbiotic and food-grade essential oils against Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli alone and in combination, and their application as a green preservative in the seafood industry. Food Res Int. 2022;156:111163. doi:10.1016/j.foodres.2022.111163
  • Jadhav S, Shah R, Bhave M, et al. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control. 2013;29:125–130. doi:10.1016/j.foodcont.2012.05.071
  • Yang YB, Chen JQ, Zhao YL, et al. Sub-MICs of Azithromycin Decrease Biofilm Formation of Streptococcus suis and Increase Capsular Polysaccharide Content of S. suis. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.01659
  • Quave CL, Plano LR, Pantuso T, et al. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 2008;118:418–428. doi:10.1016/j.jep.2008.05.005
  • Limsuwan S, Voravuthikunchai SP. Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol Med Microbiol. 2008;53:429–436. doi:10.1111/j.1574-695X.2008.00445.x
  • Taganna JC, Quanico JP, Perono R, et al. Tannin-rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. J Ethnopharmacol. 2011;134:865–871. doi:10.1016/j.jep.2011.01.028
  • Lopes SC, Blanco YC, Justo GZ, et al. Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother. 2009;53:2149–2152. doi:10.1128/AAC.00693-08
  • Huston AL, Methe B, Deming JW. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microbiol. 2004;70:3321–3328. doi:10.1128/AEM.70.6.3321-3328.2004
  • Navarini L, Gilli R, Gombac V, et al. Polysaccharides from hot water extracts of roasted Coffea arabica beans: isolation and characterization. Carbohydr Polym. 1999;40:71–81. doi:10.1016/S0144-8617(99)00032-6
  • Zhang XS, Garcia-Contreras R, Wood TK. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol. 2007;189:3051–3062. doi:10.1128/JB.01832-06
  • Lin L, Wang XL, Cui HY. Synergistic efficacy of pulsed magnetic fields and Litseacubeba essential oil treatment against Escherichia coli O157:H7 in vegetable juices. Food Control. 2019;106.
  • Nithya C, Aravindraja C, Pandian SK. Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol. 2010;161:293–304. doi:10.1016/j.resmic.2010.03.002
  • Cottiglia F, Loy G, Garau D, et al. Antimicrobial evaluation of coumarins and flavonoids from the stems of Daphne gnidium L. Phytomedicine. 2001;8:302–305. doi:10.1078/0944-7113-00036
  • Lima VN, Oliveira-Tintino CDM, Santos ES, et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: gallic acid, caffeic acid and pyrogallol. Microb Pathogenesis. 2016;99:56–61. doi:10.1016/j.micpath.2016.08.004
  • Liu MH, Wu XX, Li JK, et al. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control. 2017;73:613–618. doi:10.1016/j.foodcont.2016.09.015
  • Sheng LN, Rasco B, Zhu MJ. Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7. Appl Environ Microb. 2016;82:6531–6540. doi:10.1128/AEM.01702-16
  • Laspidou CS, Rittmann BE. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 2002;36:2711–2720. doi:10.1016/S0043-1354(01)00413-4
  • Nagar N, Aswathanarayan JB, Vittal RR. Anti-quorum sensing and biofilm inhibitory activity of Apium graveolens L. oleoresin. J Food Sci Tech Mys. 2020;57:2414–2422. doi:10.1007/s13197-020-04275-y
  • Papenfort K, Bassler BL. Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14:576–588. doi:10.1038/nrmicro.2016.89
  • Waters CM, Bassler BL. QUORUM SENSING: cell-to-Cell Communication in Bacteria. Annu Rev Cell Dev Biol. 2005;21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001
  • Wang JF, Liu QJ, Li XH, et al. In-situ monitoring AHL-mediated quorum-sensing regulation of the initial phase of wastewater biofilm formation. Environ Int. 2020;2:135.
  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551:313–320. doi:10.1038/nature24624
  • De Kievit TR, Gillis R, Marx S, et al. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microb. 2001;67:1865–1873. doi:10.1128/AEM.67.4.1865-1873.2001
  • Yin HG, Deng YF, Wang HF, et al. Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa. Sci Rep-UK. 2015;5:6836.
  • Choo JH, Rukayadi Y, Hwang JK. Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol. 2006;42:637–641. doi:10.1111/j.1472-765X.2006.01928.x
  • Vikram A, Jayaprakasha GK, Jesudhasan PR, et al. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol. 2010;109:515–527. doi:10.1111/j.1365-2672.2010.04677.x
  • Jaisi DP, Dong HL, Kim J, et al. Nontronite particle aggregation induced by microbial Fe(III) reduction and exopolysaccharide production. Clay Clay Miner. 2007;55:96–107. doi:10.1346/CCMN.2007.0550108
  • LewisOscar F, Nithya C, Bakkiyaraj D, et al. Biofilm Inhibitory Effect of Spirulina platensis Extracts on Bacteria of Clinical Significance. Proce National Acad Sci. 2015;87:537–544. doi:10.1007/s40011-015-0623-9
  • Nithyanand P, Thenmozhi R, Rathna J, et al. Inhibition of Streptococcus pyogenes Biofilm Formation by Coral-Associated Actinomycetes. Curr Microbiol. 2010;60:454–460. doi:10.1007/s00284-009-9564-y
  • Polaquini SRB, Svidzinski TIE, Kemmelmeier C, et al. Effect of aqueous extract from Neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch Oral Biol. 2006;51:482–490. doi:10.1016/j.archoralbio.2005.11.007
  • Oh YJ, Lee NR, Jo W, et al. Effects of substrates on biofilm formation observed by atomic force microscopy. Ultramicroscopy. 2009;109:874–880. doi:10.1016/j.ultramic.2009.03.042
  • Bonez PC, Rossi GG, Bandeira JR, et al. Anti-biofilm activity of A22 ((S-3,4-dichlorobenzyl) isothiourea hydrochloride) against Pseudomonas aeruginosa: influence on biofilm formation, motility and bioadhesion. Microb Pathogenesis. 2017;111:6–13. doi:10.1016/j.micpath.2017.08.008